Ostorhinchus cyanosoma

Last updated

Ostorhinchus cyanosoma
Apogon cf. cyanosoma.JPG
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Kurtiformes
Family: Apogonidae
Genus: Ostorhinchus
Species:
O. cyanosoma
Binomial name
Ostorhinchus cyanosoma
(Bleeker, 1853)
Synonyms

Apogon cyanosomaBleeker, 1853

Ostorhinchus cyanosoma, commonly known as the yellow-striped cardinalfish, goldenstriped cardinalfish, or the orange-lined cardinalfish, [1] is a species of marine fish in the cardinalfish family (family Apogonidae) of order Perciformes. It is native to the Indo-West Pacific.

Contents

O. cyanosoma is usually a blueish silver color with orange-yellow stripes, and grows to be an average of 6 centimeters. It lives in waters up to 50m in depth, often in lagoons or coral reefs. It is active during the nighttime, feeding on small plants and animals, mostly plankton. It has been the subject of research to test what might happen to marine life by the year 2100, due to predicted carbon dioxide levels in the atmosphere.

Taxonomy

Cladogram

O. moluccensis

O. taeniophorus

O. selas

O. properuptus

O. cyanosoma

O. rubrimacula

O. holotaenia

O. luteus

Selected genetic neighbours [2]

The prolific Dutch East Indies-resident ichthyologist Pieter Bleeker first described this species in 1853 from a specimen taken at Lawajong off Solor Island in modern Indonesia's East Nusa Tenggara province. [3] His unique, original holotype is lodged at the Naturalis Biodiversity Center in the Netherlands. [4]

Etymology

No one has described a synonymous species, so Bleeker's original species name cyanosoma remains unchallenged. However, the genus Apogon which he placed it in masked significant differences between species. More recently, on the basis of physical (2005) [5] and genetic (2014) [2] characteristics, it has been transferred into the genus Ostorhinchus .

On the journey to dissecting the O. cyanosoma species complex [6] now incorporating O. cyanosoma, O. rubrimacula , O. wassinki , and O. properuptus , the last was for a while considered a synonym of O. cyanosoma. [7]

Description

Large examples of Ostorhinchus cyanosoma grow to 8 cm in length [8] although its average length is 6 cm. [9] The fish is colored silver with a blueish tinge, and has six orange-yellow stripes including a short stripe behind the eye. [8]

A new species ( Ostorhinchus rubrimacula ) was separated out in 1998 from the O. cyanosoma species complex, with almost identical morphology but with a pinkish-red spot on the tail base, [6] and the genetics were confirmed in 2014. [2] Notably, whilst Bleeker noted red fins ('pinnis rubris') in his original sample, he never noted a red tail spot. [3]

Meristics

Using a shorthand meristics formula, O. cyanosoma can be described as having:

D, VII + I,9

A II,8

P, 14

LL, 24

GR, 4–5 + 16–19 [8]

Distribution and habitat

Range

The most comprehensive recent authority locates O. cyanosoma ranging across the Indo-Pacific, from the Red Sea south to east Africa, east via western Australia and Queensland to New Caledonia, and north to Ryukyu and Ogasawara islands. [8]

Settlement

It lives in clear water areas of lagoons and shallow reefs, inhabiting waters from 1 to 50 meters (usually above 15m), and makes its home under ledges, in holes, and in between the spines of sea urchins. [9]

Coral reef fish settlement tends to be dominated by larval recruitment, but in at least part of Australia's Great Barrier Reef, around one third of recruitment of O. cyanosoma at any given coral reef patch tends to be by adult and juvenile migration across intervening sand and coral debris. [10]

Within the large aggregations in which O. cyanosoma prefers, stable male-female pairs are often found. Individuals in pairs are more likely to live in one site, and to be able to return to that site if removed (with or without their partner), than are unpaired individuals. [11] Retaining a fixed spatial refuge on a reef may be a crucial factor in surviving the often ferocious piscivorous predation found there. [12]

Parasites

O. cyanosoma specimens have been found with gall bladder infections of Ceratomyxa cyanosomae , Ceratomyxa cardinalis , [13] Ellipsomyxa apogoni , and Zschokkella ohlalae ,. [14] Two species have also been found in skeletal muscle cells: Kudoa cheilodipteri and Kudoa whippsi . [15] These tiny cnidarian parasites from class Myxosporea are doubly fascinating because this group can require two intermediate hosts involving two sexual stages (an extremely rare phenomenon in the parasite world).

Behavior

Diet

O. cyanosoma is mainly a nocturnal planktivore, emerging from hiding in coral caves and crevices to feed by hovering just above sandy microhabitats on coral reef flats. By defecating during the daytime in a non-feeding microhabitat, O. cyanosoma probably helps cycle reef nutrients around different communities on the reef. It appears to prefer to eat small benthic sergestid crustaceans rather than the planktonic larvae to be found higher in the water column. [16] However, seasonal or sampling effects may play a role in defining the diet, since in certain years, certain sites appear to suggest that O. cyanosoma is actually eating significant amounts of planktonic copepods and crustacean larvae. [17]

Although its wide mouth gape may be well suited to eating benthic prey, consumption of varying types of prey by cardinalfishes with different mouth shapes appears in reality to be better correlated with varying availability (i.e. many mouth shapes can still make generalist species). [18]

Reproduction

O. cyanosoma is a paternal mouthbrooder. This is likely to be a more important reason for the sexual dimorphism shown by the male's wider gape and more protruding lower jaw, than is its prey specificity. A bigger mouth allows for more eggs to be protected from predation, and for better water circulation (for oxygenation in both eggs and parent). [19]

Pair bonding in O. cyanosoma does not appear to provide the expected genetic benefits of monogamy, indeed like many pair bonding fishes in its family, predation seems to have driven it rather than reproductive exclusivity. [20]

Importance to humans

Tourism

Often stationary and visible low on the reef during the day time, aggregations of O. cyanosoma add to the captivating underwater pallette enjoyed by recreational Scuba divers, [21] whose presence also contributes significantly to local economies in often poorer tropical countries. [22]

Aquariums

Export of live specimens contributes to the enjoyment of marine aquarium hobbyists, [23] which if managed appropriately, can also benefit local, often poorer, communities. [24]

Research

O. cyanosoma has been used as a laboratory experimental animal to test what might happen to marine life by the year 2100, given predicted atmospheric levels of carbon dioxide. It appears that the negative effects on fish metabolic rate (and related survival) of ocean acidification caused by extra carbon dioxide dissolution could be equivalent to an extra 3 °C of water temperature (which global warming is already causing). [25] Reef fish populations in higher (cooler) latitudes appear to have more capacity to cope with rising temperatures and acidification than those nearer the equator. [26]

Related Research Articles

<span class="mw-page-title-main">Apogonidae</span> Family of fishes

Cardinalfishes are a family, Apogonidae, of ray-finned fishes found in the Atlantic, Indian, and Pacific Oceans; they are chiefly marine, but some species are found in brackish water and a few are found in fresh water. A handful of species are kept in the aquarium and are popular as small, peaceful, and colourful fish. The family includes about 370 species.

<i>Ostorhinchus fleurieu</i> Species of fish

Ostorhinchus fleurieu is a species of cardinalfish native to the Red Sea and Persian Gulf, the Gulf of Oman, and the waters around East Africa, Seychelles, India, Sri Lanka, the Indo-Malayan region, and Hong Kong., south to the Ashmore Reef, Western Australia. It is the type species of the genus Ostorhinchus. The specific name honours the French explorer and hydrographer Charles Pierre Claret, comte de Fleurieu (1738-1810) who was a colleague and friend of Lacepède's.

<span class="mw-page-title-main">Banggai cardinalfish</span> Species of fish

The Banggai cardinalfish is a small tropical cardinalfish in the family Apogonidae. It is the only member of its genus. This attractive fish is popular in the aquarium trade. It is among the relatively few marine fish to have been bred regularly in captivity, but significant numbers are still captured in the wild and it is now an endangered species. The detrimental impact of humans on its environment and certain fatal diseases threaten this species' numbers significantly. Iridovirus diseases are known to be significant reason for fish mortality.

<i>Apogon</i> Genus of fishes

Apogon is a large genus of fish in the family Apogonidae, the cardinalfishes. They are among the most common fish on coral reefs. Over 200 species have been classified in genus Apogon as members of several subgenera. Some of these subgenera, such as Ostorhinchus, have been elevated to genus status, leaving just over 50 species in the genus.

<span class="mw-page-title-main">Ring-tailed cardinalfish</span> Species of fish

The ring-tailed cardinalfish is a widespread fish species in the family Apogonidae found in the Red Sea and off East Africa to Papua New Guinea, north to Japan, and south to Australia.

<i>Sphaeramia</i> Genus of fishes

Sphaeramia is a genus of the Apogonidae (cardinalfishes). They are marine fish that live in shallow tropical reefs in the Indian and Pacific Oceans

<i>Ostorhinchus compressus</i> Species of fish

Ostorhinchus compressus, commonly called the ochre-striped cardinalfish, blue-eyed cardinalfish or split banded cardinalfish, is a marine cardinalfish from the Indo-West Pacific from the family Apogonidae. It occasionally makes its way into the aquarium trade. It grows to a size of 12 cm in length.

<i>Ostorhinchus neotes</i> Species of fish

Ostorhinchus neotes, the mini cardinalfish, is a species of ray-finned fish, a cardinalfish, from the family Apogonidae. It is found in the western central Pacific Ocean from the Philippines south to Australia and has been reported from Tonga. It is a small cardinalfish with a small semi-transparent body which has a black stripe along its flanks underneath the skin, and a large, black spot at the base of the caudal fin. It occurs in lagoons and outer reefs where the water is relatively clear and normally where there are soft corals or gorgonian fans. It forms small schools, but mates in couples and the male mouth broods the eggs. It shelters in crevices in the reef.

<i>Ostorhinchus sealei</i> Species of fish

Ostorhinchus sealei, Seale's cardinalfish or the cheek-barred cardinalfish, is a species of ray-finned fish, a cardinalfish, from the family Apogonidae. It is an Indo-Pacific species which ranges from Malaysia east to the Solomon Islands, north to southern Japan and south to northwestern Australia, as well as Palau in Micronesia. It is an uncommon species which occurs among branching corals in the sheltered lagoons protected by reefs. It can be found in small to large aggregations low in the water over the reef. It is infrequent below depths of 10 metres (33 ft). They are mouthbrooders which form pairs to mate. During the day these fish shelter in the reef and they emerge at night to feed on zooplankton and benthic invertebrates. The specific name honours the American ichthyologist Alvin Seale (1871-1958).

<i>Ostorhinchus</i> Genus of fishes

Ostorhinchus is a genus of ray-finned fish in the family Apogonidae native to the Indian and Pacific Oceans.

<i>Siphamia</i> Genus of fishes

Siphamia is a genus of cardinalfishes native to the Indian and Pacific Ocean. Several of these species are commensal with various species of sea urchins.

<i>Kudoa</i> Genus of marine parasites

Kudoa is a genus of Myxozoa and the only genus recognized within the monotypic family Kudoidae. There are approximately 100 species of Kudoa all of which parasitize on marine and estuarine fish. Kudoa are most commonly known and studied for the negative effects the genus has on commercial fishing and aquaculture industries.

<span class="mw-page-title-main">Bigtooth cardinalfish</span> Species of fish

Paroncheilus affinis, the bigtooth cardinalfish or longtooth cardinalfish, is a species of marine fish in the family Apogonidae and the only member of its genus. The bigtooth cardinalfish lives in the west-central Atlantic, off southern Florida, United States, and from the Bahamas to Venezuela, and as far south as Suriname. This species also is found in the east-central Atlantic and the Gulf of Guinea, and has been reported as far as Cape Verde. It is a pale orangeish colour.

<i>Ostorhinchus capricornis</i> Species of fish

Ostorhinchus capricornis, also known as the Capricorn cardinalfish, is a species of ray-finned fish, a cardinalfish from the family Apogonidae which occurs around reefs in the western Pacific Ocean.

Kudoa gunterae is a myxosporean parasite of marine fishes, first discovered in Australia from 10 pomacentrid species and 1 apogonid species.

Kudoa whippsi is a myxosporean parasite of marine fishes, first discovered in Australia from 8 pomacentrid species and 1 apogonid species.

Kudoa paraquadricornis is a myxosporean parasite of marine fishes, first discovered in Australia from 4 carangid species.

Kudoa kenti is a myxosporean parasite of marine fishes, first discovered in Australia from 4 pomacentrid species.

Ceratomyxa brayi is a species of myxosporean parasites that infect gall-bladders of serranid fishes from the Great Barrier Reef. It was first found on Cephalopholis boenak.

Ostorhinchus flavus, the brassy cardinalfish or yellow cardinalfish, is a species of ray-finned fish from the family Apogonidae, the cardinalfishes. It occurs on the Great Barrier Reef and in the Coral Sea, as well as in the Tasman Sea at Lord Howe Island and at Norfolk Island. The species also occurs in the south-west Pacific. The males mouthbrood the eggs and the species forms pairs. It is similar in appearance to Ostorhinchus capricornis but this species has two white stripes through its eye rather than neon blue ones.

References

  1. Common names for Ostorhinchus cyanosoma at www.fishbase.org.
  2. 1 2 3 Mabuchi K.; Fraser T.H.; Song H.; Azuma Y.; Nishida M. (2014). "Revision of the systematics of the cardinalfishes (Percomorpha: Apogonidae) based on molecular analyses and comparative reevaluation of morphological characters". Zootaxa. 3846 (2): 151–203. doi: 10.11646/zootaxa.3846.2.1 . PMID   25112246.
  3. 1 2 Bleeker, P. (1853). "Bijdrage tot de kennis der ichthyologische fauna van Solor". Natuurkundig Tijdschrift voor Nederlandsch Indië. 5 (1): 71–72.
  4. Eschmeyer, W. N.; R. Fricke; R. van der Laan (eds.). "CATALOG OF FISHES: GENERA, SPECIES, REFERENCES". 2 March 2018.
  5. Randall, J. E. (2005). Reef and shore fishes of the South Pacific. New Caledonia to Tahiti and the Pitcairn Islands. University of Hawai'i Press, Honolulu.
  6. 1 2 Randall, J. E.; M. Kulbicki (1998). "Two new cardinalfishes (Perciformes: Apogonidae) of the Apogon cyanosoma complex from the western Pacific, with notes on the status of A. wassinki Bleeker". Revue Française d'Aquariologie Herpétologie. 25 (1–2): 31–39.
  7. Paxton, J. R.; D. F. Hoese; G. R. Allen; J. E. Hanley (1989). Pisces. Petromyzontidae to Carangidae. Vol. 7. Australian Government Publishing Service, Canberra.
  8. 1 2 3 4 Allen, G.R. and M.V. Erdmann 2012 Reef fishes of the East Indies. Tropical Reef Research, Perth, Australia. Volume I, p. 391.
  9. 1 2 Froese, Rainer; Pauly, Daniel (eds.) (2018). "Ostorhinchus cyanosoma" in FishBase. February 2018 version.
  10. Lewis, A. R. (1997). "Recruitment and post-recruit immigration affect the local population size of coral reef fishes" (PDF). Vision Research. 16 (3): 139–149. Bibcode:1997CorRe..16..139L. doi:10.1007/s003380050068. S2CID   27321900.
  11. Rueger, T.; Gardiner N. M.; G. P. Jones (2013). "Relationships between pair formation, site fidelity and sex in a coral reef cardinalfish". Journal of Environmental Management. 121: 29–36. doi:10.1016/j.jenvman.2013.02.019. PMID   23523829.
  12. Hixon, M. A. (2015). "Predation: piscivory and the ecology of coral reef fishes". In Mora, C. (ed.). Ecology of fishes on coral reefs. Cambridge University Press. pp. 41–52. ISBN   978-1-107-08918-1.
  13. Heiniger, H.; R. D. Adlard (2013). "Molecular identification of cryptic species of Ceratomyxa Thélohan, 1892 (Myxosporea: Bivalvulida) including the description of eight novel species from apogonid fishes (Perciformes: Apogonidae) from Australian waters". Acta Parasitologica. 58 (3): 342–360. doi: 10.2478/s11686-013-0149-3 . PMID   23990433.
  14. Heiniger, H.; R. D. Adlard (2014). "Relatedness of novel species of Myxidium Butschli, 1882, Zschokkella Auerbach, 1910 and Ellipsomyxa Køie, 2003 (Myxosporea: Bivalvulida) from the gall ladders of marine fishes (Teleostei) from Australian waters". Systematic Parasitology. 87 (1): 47–72. doi:10.1007/s11230-013-9454-3. PMID   24395575. S2CID   15837067.
  15. Heiniger, H.; Cribb T. H.; R. D. Adlard (2013). "Intra-specific variation of Kudoa spp. (Myxosporea: Multivalvulida) from apogonid fishes (Perciformes), including the description of two new species, K. cheilodipteri n. sp. and K. cookii n. sp., from Australian waters". Systematic Parasitology. 84 (3): 193–215. doi:10.1007/s11230-012-9400-9. PMID   23404757. S2CID   10556733.
  16. Marname, M. J.; D. R. Bellwood (2002). "Diet and nocturnal foraging in cardinalfishes (Apogonidae) at One Tree Reef,Great Barrier Reef, Australia" (PDF). Marine Ecology Progress Series. 231: 261–268. Bibcode:2002MEPS..231..261M. doi: 10.3354/meps231261 .
  17. Frédérich, B.; et al. (2017). "Comparative Feeding Ecology of Cardinalfishes (Apogonidae) at Toliara Reef, Madagascar" (PDF). Zoological Studies. 56 (10): 1–14. doi:10.6620/ZS.2017.56-10. PMC   6517718 . PMID   31966209.
  18. Barnett, A.; D. R. Bellwood; A. S. Hoey (2006). "Trophic ecomorphology of cardinalfish" (PDF). Marine Ecology Progress Series. 322: 249–257. Bibcode:2006MEPS..322..249B. doi: 10.3354/meps322249 .
  19. Hoey A. S.; D. R. Bellwood; Barnett A. (2012). "To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes". Proceedings of the Royal Society B: Biological Sciences. 279 (1737): 2426–2432. doi:10.1098/rspb.2011.2679. PMC   3350681 . PMID   22319124.
  20. Brandl, S. J.; D. R. Bellwood (2014). "Pair-Formation in Coral Reef Fishes: An Ecological Perspective". Oceanography and Marine Biology. Oceanography and Marine Biology: an Annual Review. Vol. 52. pp. 1–80. doi:10.1201/b17143-2. ISBN   978-1-4822-2059-9.
  21. "Yellowstriped Cardinalfish - Ostorhinchus cyanosoma - Cardinalfishes - - Tropical Reefs".
  22. Schuhmann, P. W.; et al. (2014). "Recreational SCUBA divers' willingness to pay for marine biodiversity in Barbados". Behavioural Processes. 107: 119–126.
  23. "Yellowstriped Cardinalfish (Ostorhinchus cyanosoma) - Tropical Fish Keeping - Aquarium fish care and resources". 16 May 2013.
  24. Sadovy de Mitcheson, Y.; Yin, X. (2015). "Cashing in on coral reefs: the implications of exporting reef fishes". In Mora, C. (ed.). Ecology of fishes on coral reefs. Cambridge University Press. pp. 166–179. ISBN   978-1-107-08918-1.
  25. Munday, P. L.; Crawley N. E.; G. E. Nilsson (2009). "Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes". Marine Ecology Progress Series. 388: 235–242. Bibcode:2009MEPS..388..235M. doi: 10.3354/meps08137 .
  26. Gardiner, N. M.; Munday, P. L.; G. E. Nilsson (2010). "Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures". PLOS ONE. 5 (10): e13299. Bibcode:2010PLoSO...513299G. doi: 10.1371/journal.pone.0013299 . PMC   2952621 . PMID   20949020.