Paleontology in Alabama

Last updated
The location of the state of Alabama Map of USA AL.svg
The location of the state of Alabama

Paleontology in Alabama refers to paleontological research occurring within or conducted by people from the U.S. state of Alabama. Pennsylvanian plant fossils are common, especially around coal mines. During the early Paleozoic, Alabama was at least partially covered by a sea that would end up being home to creatures including brachiopods, bryozoans, corals, and graptolites. During the Devonian the local seas deepened and local wildlife became scarce due to their decreasing oxygen levels.

Contents

Life became more abundant early in the Carboniferous. Later in the period richly vegetated swamps spread across the state. The amphibians that lived there left behind one of the greatest abundance of fossil footprints from this age known anywhere in the world. A gap in the local rock record spanned the Permian period. During the Triassic the state experienced rifting as Pangaea broke apart. Later, during the Cretaceous, the state was again partially submerged by seawater, where marine vertebrates flourished. On land the state was home to subtropical forests. The sea covering southern Alabama remained in place during the early part of the Cenozoic era. Marine invertebrates and primitive whales lived there. The climate cooled and the seas withdrew until the Ice Age when Alabama was home to mammoths, mastodons, and giant ground sloths.

Major fossil discoveries in the state's history include the 1842 discovery of the early whale Basilosaurus , and a later 1961 discovery of more remains from the same species. The Eocene whale Basilosaurus cetoides is the Alabama state fossil.

Prehistory

Exogyra. Exogyracostata.JPG
Exogyra .

No Precambrian fossils are known from Alabama. As such, the state's fossil record does not start until the Paleozoic. By the Late Cambrian the state was covered in a warm shallow sea. A rich fauna inhabited this sea. An episode of geologic activity called the Taconic Orogeny uplifted mountains in the state during the Late Ordovician. Sediments eroded away from these mountains are the source of those in the local Ordovician marine deposits. [1] Ordovician life of Alabama included brachiopods, bryozoans, corals, and graptolites. [2]

The same erosional and depositional processes continued on through the ensuing Silurian period. During the Devonian period the local seas deepened and their oxygen levels dropped. Fossils from this time period are rare in Alabama because the low oxygen conditions excluded most life forms from the local waters. [1] Life became abundant once more in the local waters during the Mississippian epoch of the Carboniferous period. [1] The name Carboniferous means "coal-bearing". This period has been nicknamed the "age of amphibians" or the "age of coal swamps". During the Mississippian, carbonate rocks were being deposited in the state that would preserve many contemporary life forms as fossils. [3] The Mississippian marine life of Alabama included blastoids, brachiopods, bryozoans, corals, and crinoids. [4] Alabama was as swampy as the nickname of the Carboniferous period would suggest from the Late Mississippian into the Pennsylvanian. [5] During the ensuing Pennsylvanian epoch the same sediments eroded from the mountains had formed an expansive coastal plain. [1] The Black Warrior Basin of Alabama preserves evidence for ancient Carboniferous swamps. [5] The rich plant life of these swamps would be preserved in great detail and abundance in the northern part of the state. [5] Early trees and plants resembling ferns grew there. This vegetation left behind great coal deposits. [1] This region also has the largest and most diverse fossil tracksites from this time period in the world. [5] Sediments were eroded away from Alabama rather than deposited during the Permian period, so there are no local rocks from this time period. [1]

Alabama experienced rifting during the Triassic period of the Mesozoic era due to the breakup of Pangaea. The valleys formed by the rifts had filled with seawater by the Jurassic period. During the Late Cretaceous Alabama was partially covered by seawater once more. [1] A wide variety of different animals lived in this sea. The oysters Exogyra and Gryphaea were preserved in great abundance during the Cretaceous period. [6] Cretaceous life also included cephalopods, corals, and gastropods. [7] When Alabama's Mooreville Chalk was deposited the area was home to protostegid turtles and the shark Cretoxyrhina mantelli , which fed on them. Sometimes the shark's feeding activities would leave physical evidence on the turtle's bones that would be preserved when they fossilized. [8] Other Alabama sharks included the genus Squalicorax , which also commonly left behind tooth tips embedded in the bones of animals it fed on. Broken Squalicorax crowns have been found embedded in the bones of mosasaurs and even a young hadrosaur. [9] A type of large, freshwater turtle that lived in Cretaceous Alabama was Bothremys , which may have fed on ancient snails. [10] Sea turtle fossils are also commonly found in the Cretaceous rocks of Alabama and in 2018, a new species of Peritresius was named based on Alabama fossils. [11] Areas of Alabama not covered by seawater were home to subtropical forests. [1] Armored and duckbilled dinosaurs inhabited the state, as did tyrannosauroids. The local dinosaurs also left behind eggs to fossilize. [12]

During most of the Tertiary period of the Cenozoic southern Alabama was covered by the sea. The rest of the state was a coastal plain covered by subtropical forests. [1] Paleocene life in Alabama included pelecypods. [13] Eocene life included echinoids, gastropods, solitary corals, and sharks. [14] Basilosaurus "ruled the seas" of Tertiary Alabama. [15] The Early Tertiary Claiborne Group is well known for preserving silicified Ostrea oysters. [6] Claiborne Group outcrops in the state also preserve fossil flowers and pollen. [16] Oligocene life included discoid foraminiferans. [17] By the Pleistocene the local climate had cooled significantly. Although this was the time of the Ice Age, Alabama was too far south to have glaciers within its own boundaries. The northern half of the state was covered in spruce forests. The southern part of the state included grasslands and forests with a greater variety of trees than those of northern Alabama. Local wildlife included mammoths, mastodons, and giant ground sloths. [1]

History

Restoration of Basilosaurus. Basilosaurus.jpg
Restoration of Basilosaurus .

The process of mining Carboniferous-aged coal to help power the industrial revolution has been responsible for uncovering tracks left at that time by early tetrapods in Alabama. Such discoveries frequently occur when the excavation of coal mines removes the rock underlying the trackway, leaving it exposed on the tunnel's ceiling. [18] In 1842, one of the state's biggest early fossil discoveries occurred, the remains of the primitive whale Basilosaurus . [6] The fossils were discovered on a plantation owned by Judge John Creagh of Clarke County, Alabama. His slaves thought the bones had belonged to one of the fallen angels. Local doctors identified the fossils as belonging to an ancient marine reptile. However, some of the fossils were shipped to Sir Richard Owen in England. Owen realized the bones actually belonged to a whale and tried to rename the creature Zeuglodon . [19] Despite the attempted rename, "Zeuglodon" is still formally known by the name first given to it, Basilosaurus. [15] Herman Melville later discussed this discovery in his famous 1851 novel, Moby Dick . [19]

Alabama's Cretaceous rocks have been studied since at least as far back as 1856. In 1919 additional interest was attracted to the local Cretaceous system when a Professional Paper published by the United States Geological Survey listed at least a dozen local sources of contemporary plant fossils. [17] USGS Professional Paper 112 listed sources of Alabama plant fossils in the vicinities of the following towns: Centerville, Cottondale, Cowikee Creek, Eufaula, Glen Allen, Havana, Mapleville, Sanders Ferry Bluff, Shirleys, Snow Plantation, Soap Hill, Tuscaloosa, and Whites Bluff. [20] These sites have produced at least a hundred different kinds of plant over the ensuing years. However, some of these sites were lost after being submerged in the construction of a lock system on the Warrior River. [17] In July 1961, a fossil discovery occurred that author Marian Murray called "one of the most exciting" [19] in the state's history. A Washington County farmer located not far from Millry uncovered a large fossil vertebra while ploughing. The vertebra was later found to belong to Basilosaurus, the primitive Tertiary whale. Further excavation found that almost all of the animal's skeleton was preserved there. Among the recovered remains were 118 vertebrae, 8 ribs, and a six-foot skull with teeth. The bones were taken to Tuscaloosa for the University of Alabama to be made into a museum exhibit. [19] More recently, in 1984 Basilosaurus cetoides was designated the Alabama state fossil. In 2005, the new tyrannosauroid Appalachiosaurus was named based on local Cretaceous fossils. [21]

Paleontologists

Natural history museums

See also

Footnotes

  1. 1 2 3 4 5 6 7 8 9 10 Lacefield, Springer, and Scotchmoor (2005); "Paleontology and geology".
  2. Murray (1974); "Alabama", page 79.
  3. Picconi (2003); "Ancient Seascapes of the Inland Basins: Clear, shallow environments preserved as limestone", page 93.
  4. Murray (1974); "Alabama", pages 79–80.
  5. 1 2 3 4 Picconi (2003); "Ancient Landscapes of the Inland Basins: Swamp environments preserved as dark shale or siltstone", page 94.
  6. 1 2 3 Picconi (2003); "Ancient Seascapes of the Coastal Plain: Muddy, oxygen-rich environments & Silty-sandy environments preserved as gray shale", page 99.
  7. Murray (1974); "Alabama", pages 80–81.
  8. Everhart (2005); "Sharks: Sharp Teeth and Shell Crushers", page 49.
  9. Everhart (2005); "Sharks: Sharp Teeth and Shell Crushers", page 54.
  10. Everhart (2005); "Turtles: Leatherback Giants", page 112.
  11. Gentry (2018); "A new species of Peritresius Leidy, 1856 (Testudines: Pan-Cheloniidae) from the Late Cretaceous (Campanian) of Alabama, USA, and the occurrence of the genus within the Mississippi Embayment of North America", PLoS ONE 13(4): e0195651. https://doi.org/10.1371/journal.pone.0195651
  12. Weishampel, et al. (2004); "3.30 Alabama, United States", page 587.
  13. Murray (1974); "Alabama", page 81.
  14. Murray (1974); "Alabama", page 82.
  15. 1 2 Murray (1974); "Alabama", page 86.
  16. Picconi (2003); "Terrestrial Environments: Intertidal areas, rivers, lakes, land preserved as sand, silt, clay", page 100.
  17. 1 2 3 Murray (1974); "Alabama", page 83.
  18. Lockley and Hunt (1995); "Western Traces in the 'Age of Amphibians'", page 34.
  19. 1 2 3 4 Murray (1974); "Alabama", page 85.
  20. Berry (1919); "Fossil Plant Localities", plate 1.
  21. Carr, Williamson, and Schwimmer (2005); in passim.

Related Research Articles

<span class="mw-page-title-main">Paleontology in West Virginia</span>

Paleontology in West Virginia refers to paleontological research occurring within or conducted by people from the U.S. state of West Virginia. West Virginia's fossil record begins in the Cambrian. From that time through the rest of the early Paleozoic, the state was at least partially submerged under a shallow sea. The Paleozoic seas of West Virginia were home to creatures like corals, eurypterids, graptolites, nautiloids, and trilobites at varying times. During the Carboniferous period, the sea was replaced by lushly vegetated coastal swamps. West Virginia is an excellent source of fossil plants due to these deposits. These swamps were home to amphibians. A gap in the local rock record spans from the Permian to the end of the Cenozoic. West Virginia was never the site of glacial activity during the Ice Age, but the state was home to creatures like mammoths, mastodons, and giant ground sloths. One local ground sloth, Megalonyx jeffersonii, was subject to the scholarly investigations of Thomas Jefferson, who misinterpreted the large-clawed remains as belonging to a lion-like predator. In 2008, this species was designated the West Virginia state fossil.

<span class="mw-page-title-main">Paleontology in North Carolina</span>

Paleontology in North Carolina refers to paleontological research occurring within or conducted by people from the U. S. state of North Carolina. Fossils are common in North Carolina. According to author Rufus Johnson, "almost every major river and creek east of Interstate 95 has exposures where fossils can be found". The fossil record of North Carolina spans from Eocambrian remains that are 600 million years old, to the Pleistocene 10,000 years ago.

<span class="mw-page-title-main">Paleontology in Virginia</span>

Paleontology in Virginia refers to paleontological research occurring within or conducted by people from the U.S. state of Virginia. The geologic column in Virginia spans from the Cambrian to the Quaternary. During the early part of the Paleozoic, Virginia was covered by a warm shallow sea. This sea would come to be inhabited by creatures like brachiopods, bryozoans, corals, and nautiloids. The state was briefly out of the sea during the Ordovician, but by the Silurian it was once again submerged. During this second period of inundation the state was home to brachiopods, trilobites and entire reef systems. During the mid-to-late Carboniferous the state gradually became a swampy environment.

<span class="mw-page-title-main">Paleontology in Tennessee</span>

Paleontology in Tennessee refers to paleontological research occurring within or conducted by people from the U.S. state of Tennessee. During the early part of the Paleozoic era, Tennessee was covered by a warm, shallow sea. This sea was home to brachiopods, bryozoans, cephalopods, corals, and trilobites. Tennessee is one of the best sources of Early Devonian fossils in North America. During the mid-to-late Carboniferous, the state became a swampy environment, home to a rich variety of plants including ferns and scale trees. A gap in the local rock record spans from the Permian through the Jurassic. During the Cretaceous, the western part of the state was submerged by seawater. The local waters were home to more fossil gastropods than are known from anywhere else in the world. Mosasaurs and sea turtles also inhabited these waters. On land the state was home to dinosaurs. Western Tennessee was still under the sea during the early part of the Cenozoic. Terrestrial portions of the state were swampy. Climate cooled until the Ice Age, when the state was home to Camelops, horses, mammoths, mastodons, and giant ground sloths. The local Yuchi people told myths of giant lizard monsters that may have been inspired by fossils either local or encountered elsewhere. In 1920, after local fossils became a subject of formal scientific study, a significant discovery of a variety of Pleistocene creatures was made near Nashville. The Cretaceous bivalve Pterotrigonia thoracica is the Tennessee state fossil.

<span class="mw-page-title-main">Paleontology in South Carolina</span>

Paleontology in South Carolina refers to paleontological research occurring within or conducted by people from the U.S. state of South Carolina. Evidence suggests that at least part of South Carolina was covered by a warm, shallow sea and inhabited by trilobites during the Cambrian period. Other than this, little is known about the earliest prehistory of South Carolina because the Ordovician, Silurian, Devonian, Carboniferous, Permian, Triassic, and Jurassic, are missing from the state's local rock record. The earliest fossils of South Carolina date back to the Cretaceous, when the state was partially covered by seawater. Contemporary fossils include marine invertebrates and the remains of dinosaur carcasses that washed out to sea. On land, a wide variety of trees grew. Sea levels rose and fell throughout the ensuing Cenozoic era. Local marine life included invertebrates, fish, sharks, whales. The first scientifically accurate identification of vertebrate fossils in North America occurred in South Carolina. In 1725, African slaves digging in a swamp uncovered mammoth teeth, which they recognized as originating from an elephant-like animal.

<span class="mw-page-title-main">Paleontology in New Jersey</span>

Paleontology in New Jersey refers to paleontological research in the U.S. state of New Jersey. The state is especially rich in marine deposits.

<span class="mw-page-title-main">Paleontology in Georgia (U.S. state)</span>

Paleontology in Georgia refers to paleontological research occurring within or conducted by people from the U.S. state of Georgia. During the early part of the Paleozoic, Georgia was largely covered by seawater. Although no major Paleozoic discoveries have been uncovered in Georgia, the local fossil record documents a great diversity of ancient life in the state. Inhabitants of Georgia's early Paleozoic sea included corals, stromatolites, and trilobites. During the Carboniferous local sea levels dropped and a vast complex of richly vegetated delta formed in the state. These swampy deltas were home to early tetrapods which left behind footprints that would later fossilize. Little is known of Triassic Georgia and the Jurassic is absent altogether from the state's rock record. During the Cretaceous, however, southern Georgia was covered by a sea that was home to invertebrates and fishes. On land, the tree Araucaria grew, and dinosaurs inhabited the state. Southern Georgia remained submerged by shallow seawater into the ensuing Paleogene and Neogene periods of the Cenozoic era. These seas were home to small coral reefs and a variety of other marine invertebrates. By the Pleistocene the state was mostly dry land covered in forests and grasslands home to mammoths and giant ground sloths. Local coal mining activity has a history of serendipitous Carboniferous-aged fossil discoveries. Another major event in Georgian paleontology was a 1963 discovery of Pleistocene fossils in Bartow County. Shark teeth are the Georgia state fossil.

<span class="mw-page-title-main">Paleontology in Florida</span>

Paleontology in Florida refers to paleontological research occurring within or conducted by people from the U.S. state of Florida. Florida has a very rich fossil record spanning from the Eocene to recent times. Florida fossils are often very well preserved.

<span class="mw-page-title-main">Paleontology in Mississippi</span> Paleontological research occurring within or conducted by Mississippi

Paleontology in Mississippi refers to paleontological research occurring within or conducted by people from the U.S. state of Mississippi. The oldest rocks in Mississippi date back to the Late Devonian. At the time, the northeastern part of the state was covered in a sea where brachiopods, crinoids, and trilobites lived. Remains of contemporary local plants also ended up preserved in this environment. During the Late Carboniferous, Mississippi became part of a richly-vegetated coastal plain environment. There are no rocks dating to the Permian, Triassic, or Jurassic in the state. However, during the Cretaceous, evidence suggests that the state was covered by a sea home to cephalopods, mosasaurs and sharks. Local trees left behind petrified wood and amber. By the Cenozoic, only the southern half of the state was covered in seawater, where the early whale Basilosaurus lived. On land, trees that were home to some of the earliest known primates left behind petrified wood. For the remainder of the Cenozoic, the state's climate cooled. Many fossils have been serendipitously discovered in the state by people looking for fossil fuels. Significant fossil finds in Mississippi include some of the oldest known primate fossils. The Eocene whales Basilosaurus cetoides and Zygorhiza kochii are the Mississippi state fossils.

<span class="mw-page-title-main">Paleontology in Arkansas</span>

Paleontology in Arkansas refers to paleontological research occurring within or conducted by people from the U.S. state of Arkansas. The fossil record of Arkansas spans from the Ordovician to the Eocene. Nearly all of the state's fossils have come from ancient invertebrate life. During the early Paleozoic, much of Arkansas was covered by seawater. This sea would come to be home to creatures including Archimedes, brachiopods, and conodonts. This sea would begin its withdrawal during the Carboniferous, and by the Permian the entire state was dry land. Terrestrial conditions continued into the Triassic, but during the Jurassic, another sea encroached into the state's southern half. During the Cretaceous the state was still covered by seawater and home to marine invertebrates such as Belemnitella. On land the state was home to long necked sauropod dinosaurs, who left behind footprints and ostrich dinosaurs such as Arkansaurus.

<span class="mw-page-title-main">Paleontology in Missouri</span>

Paleontology in Missouri refers to paleontological research occurring within or conducted by people from the U.S. state of Missouri. The geologic column of Missouri spans all of geologic history from the Precambrian to present with the exception of the Permian, Triassic, and Jurassic. Brachiopods are probably the most common fossils in Missouri.

<span class="mw-page-title-main">Paleontology in Iowa</span>

Paleontology in Iowa refers to paleontological research occurring within or conducted by people from the U.S. state of Iowa. The paleozoic fossil record of Iowa spans from the Cambrian to Mississippian. During the early Paleozoic Iowa was covered by a shallow sea that would later be home to creatures like brachiopods, bryozoans, cephalopods, corals, fishes, and trilobites. Later in the Paleozoic, this sea left the state, but a new one covered Iowa during the early Mesozoic. As this sea began to withdraw a new subtropical coastal plain environment which was home to duck-billed dinosaurs spread across the state. Later this plain was submerged by the rise of the Western Interior Seaway, where plesiosaurs lived. The early Cenozoic is missing from the local rock record, but during the Ice Age evidence indicates that glaciers entered the state, which was home to mammoths and mastodons.

<span class="mw-page-title-main">Paleontology in South Dakota</span>

Paleontology in South Dakota refers to paleontological research occurring within or conducted by people from the U.S. state of South Dakota. South Dakota is an excellent source of fossils as finds have been widespread throughout the state. During the early Paleozoic era South Dakota was submerged by a shallow sea that would come to be home to creatures like brachiopods, cephalopods, corals, and ostracoderms. Local sea levels rose and fall during the Carboniferous and the sea left completely during the Permian. During the Triassic, the state became a coastal plain, but by the Jurassic it was under a sea where ammonites lived. Cretaceous South Dakota was also covered by a sea that was home to mosasaurs. The sea remained in place after the start of the Cenozoic before giving way to a terrestrial mammal fauna including the camel Poebrotherium, three-toed horses, rhinoceroses, saber-toothed cat, and titanotheres. During the Ice Age glaciers entered the state, which was home to mammoths and mastodons. Local Native Americans interpreted fossils as the remains of the water monster Unktehi and used bits of Baculites shells in magic rituals to summon buffalo herds. Local fossils came to the attention of formally trained scientists with the Lewis and Clark Expedition. The Cretaceous horned dinosaur Triceratops horridus is the South Dakota state fossil.

<span class="mw-page-title-main">Paleontology in Nebraska</span>

Paleontology in Nebraska refers to paleontological research occurring within or conducted by people from the U.S. state of Nebraska. Nebraska is world-famous as a source of fossils. During the early Paleozoic, Nebraska was covered by a shallow sea that was probably home to creatures like brachiopods, corals, and trilobites. During the Carboniferous, a swampy system of river deltas expanded westward across the state. During the Permian period, the state continued to be mostly dry land. The Triassic and Jurassic are missing from the local rock record, but evidence suggests that during the Cretaceous the state was covered by the Western Interior Seaway, where ammonites, fish, sea turtles, and plesiosaurs swam. The coasts of this sea were home to flowers and dinosaurs. During the early Cenozoic, the sea withdrew and the state was home to mammals like camels and rhinoceros. Ice Age Nebraska was subject to glacial activity and home to creatures like the giant bear Arctodus, horses, mammoths, mastodon, shovel-tusked proboscideans, and Saber-toothed cats. Local Native Americans devised mythical explanations for fossils like attributing them to water monsters killed by their enemies, the thunderbirds. After formally trained scientists began investigating local fossils, major finds like the Agate Springs mammal bone beds occurred. The Pleistocene mammoths Mammuthus primigenius, Mammuthus columbi, and Mammuthus imperator are the Nebraska state fossils.

<span class="mw-page-title-main">Paleontology in Kansas</span>

Paleontology in Kansas refers to paleontological research occurring within or conducted by people from the U.S. state of Kansas. Kansas has been the source of some of the most spectacular fossil discoveries in US history. The fossil record of Kansas spans from the Cambrian to the Pleistocene. From the Cambrian to the Devonian, Kansas was covered by a shallow sea. During the ensuing Carboniferous the local sea level began to rise and fall. When sea levels were low the state was home to richly vegetated deltaic swamps where early amphibians and reptiles lived. Seas expanded across most of the state again during the Permian, but on land the state was home to thousands of different insect species. The popular pterosaur Pteranodon is best known from this state. During the early part of the Cenozoic era Kansas became a savannah environment. Later, during the Ice Age, glaciers briefly entered the state, which was home to camels, mammoths, mastodons, and saber-teeth. Local fossils may have inspired Native Americans to regard some local hills as the homes of sacred spirit animals. Major scientific discoveries in Kansas included the pterosaur Pteranodon and a fossil of the fish Xiphactinus that died in the act of swallowing another fish.

<span class="mw-page-title-main">Paleontology in Texas</span>

Paleontology in Texas refers to paleontological research occurring within or conducted by people from the U.S. state of Texas. Author Marian Murray has said that "Texas is as big for fossils as it is for everything else." Some of the most important fossil finds in United States history have come from Texas. Fossils can be found throughout most of the state. The fossil record of Texas spans almost the entire geologic column from Precambrian to Pleistocene. Shark teeth are probably the state's most common fossil. During the early Paleozoic era Texas was covered by a sea that would later be home to creatures like brachiopods, cephalopods, graptolites, and trilobites. Little is known about the state's Devonian and early Carboniferous life. Evidence indicates that during the late Carboniferous the state was home to marine life, land plants and early reptiles. During the Permian, the seas largely shrank away, but nevertheless coral reefs formed in the state. The rest of Texas was a coastal plain inhabited by early relatives of mammals like Dimetrodon and Edaphosaurus. During the Triassic, a great river system formed in the state that was inhabited by crocodile-like phytosaurs. Little is known about Jurassic Texas, but there are fossil aquatic invertebrates of this age like ammonites in the state. During the Early Cretaceous local large sauropods and theropods left a great abundance of footprints. Later in the Cretaceous, the state was covered by the Western Interior Seaway and home to creatures like mosasaurs, plesiosaurs, and few icthyosaurs. Early Cenozoic Texas still contained areas covered in seawater where invertebrates and sharks lived. On land the state would come to be home to creatures like glyptodonts, mammoths, mastodons, saber-toothed cats, giant ground sloths, titanotheres, uintatheres, and dire wolves. Archaeological evidence suggests that local Native Americans knew about local fossils. Formally trained scientists were already investigating the state's fossils by the late 1800s. In 1938, a major dinosaur footprint find occurred near Glen Rose. Pleurocoelus was the Texas state dinosaur from 1997 to 2009, when it was replaced by Paluxysaurus jonesi after the Texan fossils once referred to the former species were reclassified to a new genus.

<span class="mw-page-title-main">Paleontology in Colorado</span> Paleontological research in the U.S. state of Colorado

Paleontology in Colorado refers to paleontological research occurring within or conducted by people from the U.S. state of Colorado. The geologic column of Colorado spans about one third of Earth's history. Fossils can be found almost everywhere in the state but are not evenly distributed among all the ages of the state's rocks. During the early Paleozoic, Colorado was covered by a warm shallow sea that would come to be home to creatures like brachiopods, conodonts, ostracoderms, sharks and trilobites. This sea withdrew from the state between the Silurian and early Devonian leaving a gap in the local rock record. It returned during the Carboniferous. Areas of the state not submerged were richly vegetated and inhabited by amphibians that left behind footprints that would later fossilize. During the Permian, the sea withdrew and alluvial fans and sand dunes spread across the state. Many trace fossils are known from these deposits.

<span class="mw-page-title-main">Paleontology in New Mexico</span>

Paleontology in New Mexico refers to paleontological research occurring within or conducted by people from the U.S. state of New Mexico. The fossil record of New Mexico is exceptionally complete and spans almost the entire stratigraphic column. More than 3,300 different kinds of fossil organisms have been found in the state. Of these more than 700 of these were new to science and more than 100 of those were type species for new genera. During the early Paleozoic, southern and western New Mexico were submerged by a warm shallow sea that would come to be home to creatures including brachiopods, bryozoans, cartilaginous fishes, corals, graptolites, nautiloids, placoderms, and trilobites. During the Ordovician the state was home to algal reefs up to 300 feet high. During the Carboniferous, a richly vegetated island chain emerged from the local sea. Coral reefs formed in the state's seas while terrestrial regions of the state dried and were home to sand dunes. Local wildlife included Edaphosaurus, Ophiacodon, and Sphenacodon.

<span class="mw-page-title-main">Paleontology in Idaho</span>

Paleontology in Idaho refers to paleontological research occurring within or conducted by people from the U.S. state of Idaho. The fossil record of Idaho spans much of the geologic column from the Precambrian onward. During the Precambrian, bacteria formed stromatolites while worms left behind trace fossils. The state was mostly covered by a shallow sea during the majority of the Paleozoic era. This sea became home to creatures like brachiopods, corals and trilobites. Idaho continued to be a largely marine environment through the Triassic and Jurassic periods of the Mesozoic era, when brachiopods, bryozoans, corals, ichthyosaurs and sharks inhabited the local waters. The eastern part of the state was dry land during the ensuing Cretaceous period when dinosaurs roamed the area and trees grew which would later form petrified wood.

<span class="mw-page-title-main">Paleontology in the United States</span>

Paleontology in the United States refers to paleontological research occurring within or conducted by people from the United States. Paleontologists have found that at the start of the Paleozoic era, what is now "North" America was actually in the southern hemisphere. Marine life flourished in the country's many seas. Later the seas were largely replaced by swamps, home to amphibians and early reptiles. When the continents had assembled into Pangaea drier conditions prevailed. The evolutionary precursors to mammals dominated the country until a mass extinction event ended their reign.

References