Peroxyoxalate

Last updated

Peroxyoxalates are esters initially formed by the reaction of hydrogen peroxide with oxalate diesters or oxalyl chloride, with or without base, although the reaction is much faster with base: Peroxyoxalate formation revised.gif

Peroxyoxalates are intermediates that will rapidly transform into 1,2-dioxetanedione, another high-energy intermediate. The likely mechanism of 1,2-dioxetanedione formation from peroxyoxalate in base is illustrated below:

Dioxetanedione formation revised.png

1,2-Dioxetanedione will rapidly decompose into carbon dioxide (CO2). If there is no fluorescer present, only heat will be released. However, in the presence of a fluorescer, light can be generated (chemiluminescence).

Peroxyoxalate chemiluminescence (CL) was first reported by Rauhut in 1967 [1] in the reaction of diphenyl oxalate. The emission is generated by the reaction of an oxalate ester with hydrogen peroxide in the presence of a suitably fluorescent energy acceptor. This reaction is used in glow sticks.

Glow sticks using peroxyoxalate CL Knicklichter.jpg
Glow sticks using peroxyoxalate CL

The three most widely used oxalates are bis(2,4,6-trichlorophenyl)oxalate (TCPO), Bis(2,4,5-trichlorophenyl-6-carbopentoxyphenyl)oxalate (CPPO) and bis(2,4-dinitrophenyl) oxalate (DNPO). Other aryl oxalates have been synthesized and evaluated with respect to their possible analytical applications [2]. Divanillyl oxalate, a more eco-friendly or "green" oxalate for chemiluminescence, decomposes into the nontoxic, biodegradable compound vanillin and works in nontoxic, biodegradable triacetin [16] . Peroxyoxalate CL is an example of indirect or sensitized chemiluminescence in which the energy from an excited intermediate is transferred to a suitable fluorescent molecule, which relaxes to the ground state by emitting a photon. Rauhut and co-workers have reported that the intermediate responsible for providing the energy of excitation is 1,2-dioxetanedione [1,3]. The peroxyoxalate reaction is able to excite many different compounds, having emissions spanning the visible and infrared regions of the spectrum [3,4], and the reaction can supply up to 440 kJ mol-1, corresponding to excitation at 272 nm [5]. It has been found, however, that the chemiluminescence intensity corrected for quantum yield decreases as the singlet excitation energy of the fluorescent molecule increases [6]. There is also a linear relationship between the corrected chemiluminescence intensity and the oxidation potential of the molecule [6]. This suggests the possibility of an electron transfer step in the mechanism, as demonstrated in several other chemiluminescence systems [7-10]. It has been postulated that a transient charge transfer complex is formed between the intermediate 1,2-dioxetanedione and the fluorescer [11], and a modified mechanism was proposed involving the transfer of an electron from the fluorescer to the reactive intermediate [12]. The emission of light is thought to result from the annihilation of the fluorescer radical cation with the carbon dioxide radical anion formed when the 1,2-dioxetanedione decomposes [13]. This process is called chemically induced electron exchange luminescence (CIEEL).

Dioxetanedione decomposition pathways revised.png

Chemiluminescent reactions are widely used in analytical chemistry [14, 15]

Related Research Articles

Fluorescence Emission of light by a substance that has absorbed light

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

Nitric oxide Colorless gas with the formula NO

Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.

Chemiluminescence Emission of light as a result of a chemical reaction

Chemiluminescence is the emission of light (luminescence) as the result of a chemical reaction. There may also be limited emission of heat. Given reactants A and B, with an excited intermediate ,

Glow stick Self-contained, short-term light-source

A glow stick, also known as a light stick, chem light, light wand, light rod, and rave light, is a self-contained, short-term light-source. It consists of a translucent plastic tube containing isolated substances that, when combined, make light through chemiluminescence. The light cannot be turned off and can be used only once. The used tube is then thrown away. Glow sticks are often used for recreation, such as for events, camping, outdoor exploration, and concerts. Glow sticks are also relied upon for light during military, police, fire, and emergency medical services operations. Industrial uses include marine, transportation, and mining.

Phosphorescence Process in which energy absorbed by a substance is released relatively slowly in the form of light

Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs. Instead, a phosphorescent material absorbs some of the radiation energy and reemits it for a much longer time after the radiation source is removed.

In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques. Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material. With the help of pulsed lasers, it is possible to study processes that occur on time scales as short as 10−16 seconds. All time-resolved spectra are suitable to be analyzed using the two-dimensional correlation method for a correlation map between the peaks.

Fluorophore Agents that emit light after excitation by light

A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

The quantum yield (Φ) of a radiation-induced process is the number of times a specific event occurs per photon absorbed by the system.

Diphenyl oxalate Chemical compound

Diphenyl oxalate is a solid whose oxidation products are responsible for the chemiluminescence in a glowstick. This chemical is the double ester of phenol with oxalic acid. Upon reaction with hydrogen peroxide, 1,2-dioxetanedione is formed, along with release of the two phenols. The dioxetanedione then reacts with a dye molecule, decomposing to form carbon dioxide and leaving the dye in an excited state. As the dye relaxes back to its unexcited state, it releases a photon of visible light.

Bis(2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl)oxalate Chemical compound

Bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl]oxalate is a solid ester whose oxidation products are responsible for the chemiluminescence in a glowstick. It can be synthesized by reacting 2-carbopentoxy-3,5,6-trichlorophenol with oxalyl chloride.

Squaraine dye

Squaraine dyes are a class of organic dyes showing intense fluorescence, typically in the red and near infrared region. They are characterized by their unique aromatic four membered ring system derived from squaric acid. Most squaraines are encumbered by nucleophilic attack of the central four membered ring, which is highly electron deficient. This encumbrance can be attenuated by the formation of a rotaxane around the dye to protect it from nucleophiles. They are currently used as sensors for ions and have recently, with the advent of protected squaraine derivatives, been exploited in biomedical imaging.

Potassium ferrioxalate Chemical compound

Potassium ferrioxalate, also called potassium trisoxalatoferrate or potassium tris(oxalato)ferrate(III) is a chemical compound with the formula K
3
[Fe(C
2
O
4
)
3
]. It often occurs as the trihydrate K3[Fe(C2O4)3]·3H2O. Both are crystalline compounds, lime green in colour.

Photoinduced electron transfer

Photoinduced electron transfer (PET) is an excited state electron transfer process by which an excited electron is transferred from donor to acceptor. Due to PET a charge separation is generated, i.e., redox reaction takes place in excited state.

Electrochemiluminescence Emission of light from electrochemical reactions

Electrochemiluminescence or electrogenerated chemiluminescence (ECL) is a kind of luminescence produced during electrochemical reactions in solutions. In electrogenerated chemiluminescence, electrochemically generated intermediates undergo a highly exergonic reaction to produce an electronically excited state that then emits light upon relaxation to a lower-level state. This wavelength of the emitted photon of light corresponds to the energy gap between these two states. ECL excitation can be caused by energetic electron transfer (redox) reactions of electrogenerated species. Such luminescence excitation is a form of chemiluminescence where one/all reactants are produced electrochemically on the electrodes.

Oxalic anhydride Chemical compound

Oxalic anhydride or ethanedioic anhydride, also called oxiranedione, is a hypothetical organic compound, one of several isomers having the formula C2O3 that have been studied computationally. It can be viewed as the anhydride of oxalic acid or the two-fold ketone of ethylene oxide. It is an oxide of carbon (an oxocarbon).

1,2-Dioxetanedione Chemical compound

The chemical compound 1,2-dioxetanedione, or 1,2-dioxacyclobutane-3,4-dione, often called peroxyacid ester, is an unstable oxide of carbon (an oxocarbon) with formula C2O4. It can be viewed as a double ketone of 1,2-dioxetane (1,2-dioxacyclobutane), or a cyclic dimer of carbon dioxide.

Fluorescence in the life sciences

Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules by means of fluorescence. Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence. Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies.

TCPO Chemical compound

TCPO, or bis(2,4,6-trichlorophenyl) oxalate

Fluorescent glucose biosensors are devices that measure the concentration of glucose in diabetic patients by means of sensitive protein that relays the concentration by means of fluorescence, an alternative to amperometric sension of glucose. Due to the prevalence of diabetes, it is the prime drive in the construction of fluorescent biosensors. A recent development has been approved by the FDA allowing a new continuous glucose monitoring system called EverSense, which is a 90-day glucose monitor using fluorescent biosensors.

Xenon monochloride (XeCl) is an exciplex which is used in excimer lasers and excimer lamps emitting near ultraviolet light at 308 nm. It is most commonly used in medicine. Xenon monochloride was first synthesized in the 1960s. Its kinetic scheme is very complex and its state changes occur on a nanosecond timescale. In the gaseous state, at least two kinds of xenon monochloride are known: XeCl and Xe
2
Cl
, whereas complex aggregates form in the solid state in noble gas matrices. The excited state of xenon resembles halogens and it reacts with them to form excited molecular compounds.

References

  1. M.M. Rauhut, L.J. Bollyky, B.G. Roberts, M. Loy, R.H. Whitman, A.V. Iannotta, A.M. Semsel and R.A Clarke, J. Am. Chem. Soc., 89 (1967) 6515.
  2. K. Nahashima, K. Maki, S. Akiyama, W.H. Wang, Y. Tsukamoto and K. Imai, Analyst, 114 (1989) 1413.
  3. M.M Rauhut, B.G. Roberts, D.R. Maulding, W. Bergmark and R. Coleman, J. Org. Chem., 40 (1975) 330.
  4. P.A. Sherman, J. Holtzbech and D.E. Ryan, Anal. Chim. Acta, 97 (1978) 21.
  5. P. Lechtken and N.J. Turro, Mol. Photochem., 6 (1974) 95.
  6. K. Honda, K. Miyaguchi and K. Imai, Anal. Chim. Acta, 177 (1985) 111.
  7. G.B. Schuster, Acc. Chem. Res., 12 (1979) 366.
  8. E.A. Chandros and F.I. Sonntog, J. Am. Chem. Soc., 86 (1964) 3179.
  9. J.W. Haas and J.E. Baird, Nature (London), 214 (1967) 1006.
  10. D.M. Hercules, Acc. Chem. Res., 2 (1969) 301.
  11. M.M. Rauhut, Acc. Chem. Res., 2 (1969) 80.
  12. F. McCapra, Prog. Org. Chem., 8 (1973) 258.
  13. K.W. Sigvardson, J.M. Kennish and J.W. Birks, Anal. Chem., 56 (1984) 1096.
  14. Procedures for the enhancement of selectivity in liquid phase chemiluminescence detection, Anal. Chim. Acta, 250 (1991) 145-155.
  15. J.S. Lancaster, P.J. Worsfold, A. Kachanga. Chemiluminescence detection in analytical chemistry, Endeavour, 16 (4) (1992) 194 - 200.
  16. O. Jilani, T.M. Donahue, M.O. Mitchell, J. Chem. Educ. 88 (2011), 786-787.