A photolabile protecting group (PPG; also known as: photoremovable, photosensitive, or photocleavable protecting group) is a chemical modification to a molecule that can be removed with light. PPGs enable high degrees of chemoselectivity as they allow researchers to control spatial, temporal and concentration variables with light. Control of these variables is valuable as it enables multiple PPG applications, including orthogonality in systems with multiple protecting groups. As the removal of a PPG does not require chemical reagents, the photocleavage of a PPG is often referred to as "traceless reagent processes", and is often used in biological model systems and multistep organic syntheses. [1] [2] [3] Since their introduction in 1962, [4] numerous PPGs have been developed and utilized in a variety of wide-ranging applications from protein science [5] to photoresists. Due to the large number of reported protecting groups, PPGs are often categorized by their major functional group(s); three of the most common classifications are detailed below.
The first reported use of a PPG in the scientific literature was by Barltrop and Schofield, who in 1962 used 253.7 nm light to release glycine from N-benzylglycine. [4] Following this initial report, the field rapidly expanded throughout the 1970s as Kaplan [6] and Epstein [7] studied PPGs in a variety of biochemical systems. During this time, a series of standards for evaluating PPG performance was compiled. An abbreviated list of these standards, which are commonly called the Lester rules, [8] or Sheehan criteria [9] are summarized below:
Nitrobenzyl-based PPGs are often considered the most commonly used PPGs. [2] [3] These PPGs are traditionally identified as Norrish Type II reaction as their mechanism was first described by Norrish in 1935. [10] Norrish elucidated that an incident photon (200 nm < λ < 320 nm) breaks the N=O π-bond in the nitro-group, bringing the protected substrate into a diradical excited state. Subsequently, the nitrogen radical abstracts a proton from the benzylic carbon, forming the aci-nitro compound. Depending on pH, solvent and the extent of substitution, the aci-nitro intermediate decays at a rate of roughly 102–104 s−1. [2] Following resonance of the π-electrons, a five-membered ring is formed before the PPG is cleaved yielding 2-nitrosobenzaldehyde and a carboxylic acid.
Overall, nitrobenzyl-based PPGs are highly general. The list of functional groups that can be protected include, but are not limited to, phosphates, carboxylates, carbonates, carbamates, thiolates, phenolates and alkoxides. [2] Additionally, while the rate varies with a number of variables, including choice of solvent and pH, the photodeprotection has been exhibited in both solution and in the solid-state. Under optimal conditions, the photorelease can proceed with >95% yield. [2] Nevertheless, the photoproducts of this PPG are known to undergo imine formation when irradiated at wavelengths above 300 nm. [11] [12] [13] This side product often competes for incident radiation, which may lead to decreased chemical and quantum yields.
In attempts to raise the chemical and quantum yields of nitrobenzyl-based PPGs, several beneficial modifications have been identified. The largest increase in quantum yield and reaction rate can be achieved through substitution at the benzylic carbon. [14] However, potential substitutions must leave one hydrogen atom so the photodegradation can proceeded uninhibited.
Additional modifications have targeted the aromatic chromophore. Specifically, multiple studies have confirmed that the use of a 2,6-dinitrobenzyl PPG increases reaction yield. [15] [16] [17] [18] Additionally, depending on the leaving group, the presence of a second nitro-group may nearly quadruple the quantum yield (e.g. Φ = 0.033 to Φ = 0.12 when releasing a carbonate at 365 nm). [2] [19] While one may credit the increase in efficiency to the electronic effects of the second nitro group, this is not the case. Analogous systems with a 2-cyano-6-nitrobenzyl PPG exhibit similar electron-withdrawing effects, but do not provide such a large increase in efficiency. Therefore, the increase in efficiency is likely due to the increased probability of achieving the aci-nitro state; with two nitro groups, an incoming photon will be twice as likely to promote the compound into an excited state.
Finally, changing the excitation wavelength of the PPG may be advantageous. For example, if two PPGs have different excitation wavelengths one group may be removed while the other is left in place. To this end, several nitrobenzyl based PPGs display additional functionality. Common modifications include the use of 2-nitroveratryl (NV) [20] or 6-nitropiperonulmethyl (NP). [21] Both of these modifications induced red-shifting in the compounds' absorption spectra. [20]
The phenacyl PPG is the archetypal example of a carbonyl-based PPG. [2] Under this motif, the PPG is attached to the protected substrate at the αβ-carbon, and can exhibit varied photodeprotection mechanisms based on the phenacyl skeleton, substrate identify and reaction conditions. [22] [23] [24] [25] Overall, phenacyl PPGs can be used to protect sulfonates, phosphates, carboxylates and carbamates.
As with nitrobenzyl-based PPGs, several modifications are known. For example, the 3’,5’-dimethoxybenzoin PPG (DMB) contains a 3,5-dimethoxyphenyl substituent on the carbonyl's α-carbon. [19] Under certain conditions, DMB has exhibited quantum yields as high as 0.64. [2] Additionally, the p-hydroxyphenacyl PPG (pHP) has been designed to react through a photo-Favorskii rearrangement. [26] [27] This mechanism yields the carboxylic acid as the exclusive photoproduct; the key benefit of the pHP PPG is the lack of secondary photoreactions and the significantly different UV absorption profiles of the products and reactants. While the quantum yield of the p-hydroxyphenacyl PPG is generally in the 0.1-0.4 range, it can increase to near unity when releasing a good leaving group such as a tosylate. The photoextrusion of the leaving group from the pHP PPG is so effective, that it also releases even poor nucleofuges such as amines (with the quantum yield in the 0.01-0.5 range, and dependent on solution pH). [28] The Additionally, photorelease occurs on the nanosecond timeframe, with krelease > 108 s−1. [2] The o-hydroxyphenacyl PPG has been introduced as an alternative with absorption band shifted closer towards the visible region, however it has slightly lower quantum yields of deprotection (generally 0.1-0.3) due to excited state proton transfer available as an alternative deactivation pathway. [29]
The phenacyl moiety itself contains one chiral carbon atom in the backbone. The protected group (leaving group) is not directly attached to this chiral carbon atom, however has been shown to be able to work as a chiral auxiliary directing approach of a diene to a dienophile in a stereoselective thermal Diels–Alder reaction. [30] The auxiliary is then removed simply upon irradiation with UV light.
Another family of carbonyl-based PPGs exists that is structurally like the phenacyl motif, but which reacts through a separate mechanism. [31] [32] [33] As the name suggests, these PPGs react through abstraction of the carbonyl's γ-hydrogen. The compound is then able to undergo a photoenolization, which is mechanistically like a keto-enol tautomerization. From the enol form, the compound can finally undergo a ground-state transformation that releases the substrate. The quantum yield of this mechanism directly corresponds to the ability of the protected substrate to be a good leaving group. For good leaving groups, the rate-determining step is either hydrogen abstraction or isomerization; however, if the substrate is a poor leaving group, release is the rate-determining step.
Barltrop and Schofield first demonstrated the use of a benzyl-based PPG, [4] structural variations have focused on substitution to the benzene ring, as well as extension of the aromatic core. For example, insertion of a m,m’-dimethoxy substituent was shown to increase the chemical yield ~75% due to what has been termed the “excited state meta effect.” [2] [34] [35] However, this substitution is only able to release good leaving groups such as carbamates and carboxylates. Additionally, the addition of an o-hydroxy group enables the release of alcohols, phenols and carboxylic acids due to the proximity of the phenolic hydroxy to the benzylic leaving group. [36] [37] Finally, the carbon skeleton has been expanded to include PPGs based on naphthalene, [38] anthracene, [39] phenanthrene, [40] pyrene [41] and perylene [42] cores, resulting in varied chemical and quantum yields, as well as irradiation wavelengths and times.
Despite their many advantages, the use of PPGs in total syntheses are relatively rare. [43] Nevertheless, PPGs’ "orthogonality" to common synthetic reagents, as well as the possibility of conducting a "traceless reagent process", has proven useful in natural product synthesis. Two examples include the syntheses of ent-Fumiquinazoline [44] and (-)-diazonamide A. [45] The syntheses required irradiation at 254 and 300 nm, respectively.
Protecting a substrate with a PPG is commonly referred to as "photocaging." This term is especially popular in biological systems. For example, Ly et al. developed a p-iodobenzoate-based photocaged reagent, which would experience a homolytic photoclevage of the C-I bond. [46] They found that the reaction could occur with excellent yields, and with a half-life of 2.5 minutes when a 15 W 254 nm light source was used. The resulting biomolecular radicals are necessary in many enzymatic processes. As a second example, researchers synthesized a cycloprene-modified glutamate photocaged with a 2-nitroveratrol-based PPG. As it is an excitatory amino acid neurotransmitter, the aim was to develop a bioorthagonal probe for glutamate in vivo . [47] In a final example, Venkatesh et al. demonstrated the use of a PPG-based photocaged therapeutic. [48] Their prodrug, which released one equivalent of caffeic acid and chlorambucil upon phototriggering, showed reasonable biocompatibility, cellular uptake and photoregulared drug release in vitro .
During the 1980s, AT&T Bell Laboratories explored the use of nitrobenzyl-based PPGs as photoresists. [49] [50] [51] [52] Over the course of the decade, they developed a deep UV positive-tone photoresist where the protected substrate was added to a copolymer of poly(methyl methacrylate) and poly(methacrylic acid). Initially, the blend was insoluble. However, upon exposure to 260 ± 20 nm light, the PPG would be removed yielding 2-nitrosobenzaldehyde and a carboxylic acid that was soluble in aqueous base.
When covalently attached to a surface, PPGs do not exhibit any surface-induced properties (i.e. they behave like PPGs in solution, and do not exhibit any new properties because of their proximity to a surface). [53] Consequently, PPGs can be patterned on a surface and removed in manner analogous to lithography to create a multifunctionalized surface. [54] This process was first reported by Solas in 1991; [55] protected nucleotides were attached to a surface and spatially-resolved single stranded polynucleotides were generated in a step-wise “grafting from” method. In separate studies, there have been multiple reports of using PPGs to enable the selective separation of blocks within block-copolymers to expose fresh surfaces. [56] [57] [58] Furthermore, this surface patterning method has since been extended to proteins. [59] [60] Caged etching agents (such as hydrogen fluoride protected with 4-hydroxyphenacyl) allows to etch only surfaces exposed to light. [61]
Various PPGs, often featuring the 2-nitrobenzyl motif, have been used to generate numerous gels. [54] In one example, researchers incorporated PPGs into a silica-based sol-gel. [62] In a second example, a hydrogel was synthesized to include protected Ca2+ ions. [63] [64] Finally, PPGs have been utilized to cross-link numerous photodegradable polymers, which have featured linear, multi-dimensional network, dendrimer, and branched structures. [58] [65] [66] [67] [68]
In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, as in asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.
Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible light (400–750 nm) or infrared radiation (750–2500 nm).
In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure R−CH2−C6H5. Benzyl features a benzene ring attached to a methylene group group.
In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.
In organic chemistry, the Ugi reaction is a multi-component reaction involving a ketone or aldehyde, an amine, an isocyanide and a carboxylic acid to form a bis-amide. The reaction is named after Ivar Karl Ugi, who first reported this reaction in 1959.
The Mitsunobu reaction is an organic reaction that converts an alcohol into a variety of functional groups, such as an ester, using triphenylphosphine and an azodicarboxylate such as diethyl azodicarboxylate (DEAD) or diisopropyl azodicarboxylate (DIAD). Although DEAD and DIAD are most commonly used, there are a variety of other azodicarboxylates available which facilitate an easier workup and/or purification and in some cases, facilitate the use of more basic nucleophiles. It was discovered by Oyo Mitsunobu (1934–2003). In a typical protocol, one dissolves the alcohol, the carboxylic acid, and triphenylphosphine in tetrahydrofuran or other suitable solvent, cool to 0 °C using an ice-bath, slowly add the DEAD dissolved in THF, then stir at room temperature for several hours. The alcohol reacts with the phosphine to create a good leaving group then undergoes an inversion of stereochemistry in classic SN2 fashion as the nucleophile displaces it. A common side-product is produced when the azodicarboxylate displaces the leaving group instead of the desired nucleophile. This happens if the nucleophile is not acidic enough or is not nucleophilic enough due to steric or electronic constraints. A variation of this reaction utilizing a nitrogen nucleophile is known as a Fukuyama–Mitsunobu.
The Claisen rearrangement is a powerful carbon–carbon bond-forming chemical reaction discovered by Rainer Ludwig Claisen. The heating of an allyl vinyl ether will initiate a [3,3]-sigmatropic rearrangement to give a γ,δ-unsaturated carbonyl, driven by exergonically favored carbonyl CO bond formation (Δ = −327 kcal/mol.
The Curtius rearrangement, first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively. Several reviews have been published.
Photosensitizers are light absorbers that alter the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.
The Petasis reaction is the multi-component reaction of an amine, a carbonyl, and a vinyl- or aryl-boronic acid to form substituted amines.
The Hunsdiecker reaction is a name reaction in organic chemistry whereby silver salts of carboxylic acids react with a halogen to produce an organic halide. It is an example of both a decarboxylation and a halogenation reaction as the product has one fewer carbon atoms than the starting material and a halogen atom is introduced its place. A catalytic approach has been developed.
A Norrish reaction, named after Ronald George Wreyford Norrish, is a photochemical reaction taking place with ketones and aldehydes. Such reactions are subdivided into Norrish type I reactions and Norrish type II reactions. While of limited synthetic utility these reactions are important in the photo-oxidation of polymers such as polyolefins, polyesters, certain polycarbonates and polyketones.
Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.
Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.
trans-Cyclooctene is a cyclic hydrocarbon with the formula [–(CH2)6CH=CH–], where the two C–C single bonds adjacent to the double bond are on opposite sides of the latter's plane. It is a colorless liquid with a disagreeable odor.
Oxazoline is a five-membered heterocyclic organic compound with the formula C3H5NO. It is the parent of a family of compounds called oxazolines, which contain non-hydrogenic substituents on carbon and/or nitrogen. Oxazolines are the unsaturated analogues of oxazolidines, and they are isomeric with isoxazolines, where the N and O are directly bonded. Two isomers of oxazoline are known, depending on the location of the double bond.
Desulfonylation reactions are chemical reactions leading to the removal of a sulfonyl group from organic compounds. As the sulfonyl functional group is electron-withdrawing, methods for cleaving the sulfur–carbon bonds of sulfones are typically reductive in nature. Olefination or replacement with hydrogen may be accomplished using reductive desulfonylation methods.
The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. The typical reaction conditions used today were developed by G. A. Kraus. H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes. There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost.
In organic chemistry, the Fujiwara–Moritani reaction is a type of cross coupling reaction where an aromatic C-H bond is directly coupled to an olefinic C-H bond, generating a new C-C bond. This reaction is performed in the presence of a transition metal, typically palladium. The reaction was discovered by Yuzo Fujiwara and Ichiro Moritani in 1967. An external oxidant is required to this reaction to be run catalytically. Thus, this reaction can be classified as a C-H activation reaction, an oxidative Heck reaction, and a C-H olefination. Surprisingly, the Fujiwara–Moritani reaction was discovered before the Heck reaction.
In organic chemistry, a fulgide is any of a class of photochromic compounds consisting of a bismethylene-succinic anhydride core that has an aromatic group as a substituent. The highly conjugated system is a good chromophore. It can undergo reversible photoisomerization induced by ultraviolet light, converting between the E and Z isomers, both of which are typically colorless compounds. Unlike the more-stable Z isomer, the E isomer can also undergo a photochemically-induced electrocyclic reaction, forming a new ring and becoming a distinctly colored product called the C form. It is thus the two-step Z–C isomerization that is the photochromic change starting from the stable uncyclized form.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: Cite journal requires |journal=
(help){{cite book}}
: |work=
ignored (help)