Pilobolus

Last updated

Pilobolus
Pilobolus sporangia.jpg
Pilobolus sp.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Mucoromycota
Order: Mucorales
Family: Pilobolaceae
Genus: Pilobolus
Tode (1784)
Type species
Pilobolus crystallinus
Species

P. crystallinus
P. kleinii
P. longipes
P. sphaerosporus
P. umbonatus
P. roridus

Contents

Synonyms [1]
  • HydrogeraF.H. Wigg. ex Kuntze
  • PycnopodiumCorda
  • HydrogeraF.H. Wigg.

Pilobolus is a genus of fungi that commonly grows on herbivore dung.

Life cycle

The life cycle of Pilobolus begins with a black sporangium that has been discharged onto a plant substrate such as grass. A herbivorous animal such as a horse then eats the substrate, unknowingly consuming the sporangium as well. The Pilobolus sporangium survives the passage through the gastrointestinal tract without germinating, and emerges with the excrement. Once outside its host, spores within the sporangium germinate and grow as a mycelium within the excrement, where it is a primary colonizer. Later, the fungus fruits to produce more spores.

Pilobolus sporangium Pilobolus2.jpg
Pilobolus sporangium

The asexual fruiting structure (the sporangiophore) of Pilobolus species is unique. It consists of a transparent stalk which rises above the excrement to end in a balloon-like subsporangial vesicle. On top of this, a single, black sporangium develops. The sporangiophore has the remarkable ability of orienting itself to point directly towards a light source. The shape and transparency of the subsporangial vesicle allow it to act as a lens, focusing light into carotenoid pigments deposited near the base of the vesicle, which absorb the photons and allow cells to detect the light level in the direction of the lens. The developing sporangiophore grows such that the maturing sporangium is aimed directly at the light.

When turgor pressure within the subsporangial vesicle builds to a sufficient level (often 7 ATM or greater), the sporangium is launched, and can travel anywhere from a couple of centimeters to a distance of 3 meters (10ft). For a sporangiophore less than 1cm tall, this involves acceleration from 0 to 20 km/h in only 2 µs, subjecting it to over 20,000 G, equivalent to a human being launched at 100 times the speed of sound. [2] [3] The orientation of the stalk towards the early morning sun apparently guarantees that the sporangium is shot some distance from the excrement, enhancing the chances that it will attach to vegetation and be eaten by a new host.

Another adaptation of Pilobolus is that the sporangium is covered in calcium oxalate crystals. Besides serving as a protective mechanism, their hydrophobic nature also leads the sporangium to flip over onto its sticky bottom after landing in a drop of dew, thus allowing it to cling to a plant substrate. Pilobolus species can be grown in artificial culture, but only when the growth medium is supplemented with some form of chelated iron, or with sterilized herbivore dung.[ citation needed ]

The forcible discharge mechanism of Pilobolus is exploited by parasitic nematodes including lungworms in the genus Dictyocaulus . Larval lungworm nematodes excreted by infected deer, elk, cattle, horses, and other hosts climb up Pilobolus sporangiophores and are discharged with the sporangium. They complete their life cycle when they and their Pilobolus vector are eaten by a new host. [4]

Related Research Articles

<span class="mw-page-title-main">Spore</span> Unit of reproduction adapted for dispersal and survival in unfavorable conditions

In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, fungi and protozoa.

<span class="mw-page-title-main">Sporangium</span> Enclosure in which spores are formed

A sporangium, is an enclosure in which spores are formed. It can be composed of a single cell or can be multicellular. Virtually all plants, fungi, and many other lineages form sporangia at some point in their life cycle. Sporangia can produce spores by mitosis, but in nearly all land plants and many fungi, sporangia are the site of meiosis and produce genetically distinct haploid spores.

<span class="mw-page-title-main">Zygomycota</span> Division or phylum of the kingdom Fungi

Zygomycota, or zygote fungi, is a former division or phylum of the kingdom Fungi. The members are now part of two phyla: the Mucoromycota and Zoopagomycota. Approximately 1060 species are known. They are mostly terrestrial in habitat, living in soil or on decaying plant or animal material. Some are parasites of plants, insects, and small animals, while others form symbiotic relationships with plants. Zygomycete hyphae may be coenocytic, forming septa only where gametes are formed or to wall off dead hyphae. Zygomycota is no longer recognised as it was not believed to be truly monophyletic.

<i>Sordaria fimicola</i> Species of fungus

Sordaria fimicola is a species of microscopic fungus. It is commonly found in the feces of herbivores. Sordaria fimicola is often used in introductory biology and mycology labs because it is easy to grow on nutrient agar in dish cultures. The genus Sordaria, closely related to Neurospora and Podospora, is a member of the large class Sordariomycetes, or flask-fungi. The natural habitat of the three species of Sordaria that have been the principal subjects in genetic studies is dung of herbivorous animals. The species S. fimicola is common and worldwide in distribution. The species of Sordaria are similar morphologically, producing black perithecia containing asci with eight dark ascospores in a linear arrangement. These species share a number of characteristics that are advantageous for genetic studies. They all have a short life cycle, usually 7–12 days, and are easily grown in culture. Most species are self-fertile and each strain is isogenic. All kinds of mutants are easily induced and readily obtainable with particular ascospore color mutants. These visual mutants aid in tetrad analysis, especially in analysis of intragenic recombination.

A zygospore is a diploid reproductive stage in the life cycle of many fungi and protists. Zygospores are created by the nuclear fusion of haploid cells. In fungi, zygospores are formed in zygosporangia after the fusion of specialized budding structures, from mycelia of the same or different mating types, and may be chlamydospores. In many eukaryotic algae, including many species of the Chlorophyta, zygospores are formed by the fusion of unicellular gametes of different mating types.

<i>Rhizopus</i> Genus of fungi

Rhizopus is a genus of common saprophytic fungi on plants and specialized parasites on animals. They are found in a wide variety of organic substances, including "mature fruits and vegetables", jellies, syrups, leather, bread, peanuts, and tobacco. They are multicellular. Some Rhizopus species are opportunistic human pathogens that often cause fatal disease called mucormycosis. This widespread genus includes at least eight species.

<i>Phycomyces blakesleeanus</i> Species of fungus

Phycomyces blakesleeanus is a filamentous fungus in the Order Mucorales of the phylum Zygomycota or subphylum Mucoromycotina. The spore-bearing sporangiophores of Phycomyces are very sensitive to different environmental signals including light, gravity, wind, chemicals and adjacent objects. They exhibit phototropic growth: most Phycomyces research has focused on sporangiophore photobiology, such as phototropism and photomecism. Metabolic, developmental, and photoresponse mutants have been isolated, some of which have been genetically mapped. At least ten different genes are required for phototropism. The madA gene encodes a protein related to the White Collar 1 class of photoreceptors that are present in other fungi, while madB encodes a protein related to the White Collar 2 protein that physically bind to White collar 1 to participate in the responses to light.

<i>Dictyocaulus</i> Genus of nematode parasites of the bronchial tree of horses, sheep, goats, deer, and cattle

Dictyocaulus is a genus of nematode parasites of the bronchial tree of horses, sheep, goats, deer, and cattle. Dictyocaulus arnfieldi is the lungworm of horses, and Dictyocaulus viviparus is the lungworm affecting ruminants.

<span class="mw-page-title-main">Mucorales</span> Order of fungi

The Mucorales is the largest and best-studied order of zygomycete fungi. Members of this order are sometimes called pin molds. The term mucormycosis is now preferred for infections caused by molds belonging to the order Mucorales.

<i>Mucor</i> Genus of fungi

Mucor is a microbial genus of approximately 40 species of molds in the family Mucoraceae. Species are commonly found in soil, digestive systems, plant surfaces, some cheeses like Tomme de Savoie, rotten vegetable matter and iron oxide residue in the biosorption process.

A subsporangial vesicle is a vesicle which is below the sporangium on a fungus.

Sporogenesis is the production of spores in biology. The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle. Dormant spores are formed, for example by certain fungi and algae, primarily in response to unfavorable growing conditions. Most eukaryotic spores are haploid and form through cell division, though some types are diploid sor dikaryons and form through cell fusion.we can also say this type of reproduction as single pollination

<i>Pilobolus crystallinus</i> Species of fungus

Pilobolus crystallinus var. crystallinus, commonly known as the "dung cannon" or "hat thrower", is a species of fungus belonging to the Mucorales order. It is unique in that it adheres its spores to vegetation, so as to be eaten by grazing animals. It then passes through the animals' digestive systems and grows in their feces. Although these fungi only grow to be 2–4 cm (0.8–1.6 in) tall, they can shoot their sporangium, containing their spores, up to 2 m (6.6 ft) away. Due to an increase of pressure in the vesicle, the sporangium can accelerate 0–45 mph in the first millimeter of its flight, which corresponds to an acceleration of an incredible 20000 g. Using a mucus-like substance found in the vesicle of the fungus, the sporangium can adhere itself onto whatever it lands, thus completing its life cycle.

<i>Entomophthora</i> Genus of fungi

Entomophthora is a fungal genus in the family Entomophthoraceae. Species in this genus are parasitic on flies and other two-winged insects. The genus was circumscribed by German physician Johann Baptist Georg Wolfgang Fresenius (1808–1866) in 1856.

<span class="mw-page-title-main">Pilobolaceae</span> Family of fungi

The Pilobolaceae are a family of fungi in the Mucorales order. Generally, species in this family have a widespread distribution, although there are some that are restricted to tropical and subtropical regions. This family includes two genera: Pilobolus, and Utharomyces.

<span class="mw-page-title-main">Coprophilous fungi</span> Fungi that grow on animal dung

Coprophilous fungi are a type of saprobic fungi that grow on animal dung. The hardy spores of coprophilous species are unwittingly consumed by herbivores from vegetation, and are excreted along with the plant matter. The fungi then flourish in the feces, before releasing their spores to the surrounding area.

Cunninghamella bertholletiae is a species of zygomycetous fungi in the order Mucorales. It is found globally, with increased prevalence in Mediterranean and subtropical climates. It typically grows as a saprotroph and is found in a wide variety of substrates, including soil, fruits, vegetables, nuts, crops, and human and animal waste. Although infections are still rare, C. betholletiae is emerging as an opportunistic human pathogen, predominantly in immunocompromised people, leukemia patients, and people with uncontrolled diabetes. Cunninghamella bertholletiae infections are often highly invasive, and can be more difficult to treat with antifungal drugs than infections with other species of the Mucorales, making prompt and accurate recognition and diagnosis of mycoses caused by this fungus an important medical concern.

Dactylellina haptotyla is a common soil-living fungus that develops structures to capture nematodes as nutrient source. In the presence of nematodes, spores can germinate into sticky knobs or non-constricting loops. The fungus traps nematodes with sticky knobs and non-constricting loops, then breakdown the cuticle, and penetrates the body of nematodes to obtain nutrients. For its predatory nature, Dactylellina haptotyla is also considered as nematode-trapping fungus or carnivorous fungus.

Triangularia setosa is a member of the Ascomycota, and of the genus Triangularia. This genus is notable for its widespread appearance on the excrement of herbivores, and is therefore seen as a coprophilous fungus. The fungus itself is characteristically dark in colour and produces sac-like perithecium with a covering of hair. Its dispersion involves the ingestion, passage, and projectile ejection of spores. It has preference for colonizing the dung of lagomorphs, such as hares and rabbits.

Meristacrum is a fungal genus in the monotypic family Meristacraceae, of the order Entomophthorales. They are parasites of soil invertebrates, they typically infect nematodes, and tardigrades.

References

  1. Pilobolus in MycoBank.
  2. Rockets in Horse Poop, BU, 2010-12-10
  3. Yafetto, L.; Carroll, L.; Cui, Y.; Davis, D.J.; Fischer, M.W.; Henterly, A.C.; Kessler, J.D.; Kilroy, H.A.; Shidler, J.B.; Stolze-Rybczynski, J.L.; Sugawara, Z.; Money, N.P. (2008). "The fastest flights in nature: high-speed spore discharge mechanisms among fungi". PLOS ONE. 3 (9): e3237. Bibcode:2008PLoSO...3.3237Y. doi: 10.1371/journal.pone.0003237 . PMC   2528943 . PMID   18797504.
  4. Foos, K. Michael (1997). "Pilobolus and lungworm disease affecting elk in Yellowstone National Park". Mycological Research. 101 (12): 1535–1536. doi:10.1017/S0953756297004668.