Plasma-activated bonding

Last updated

Plasma-activated bonding is a derivative, directed to lower processing temperatures for direct bonding with hydrophilic surfaces. The main requirements for lowering temperatures of direct bonding are the use of materials melting at low temperatures and with different coefficients of thermal expansion (CTE). [1]

Contents

Surface activation prior to bonding has the typical advantage that no intermediate layer is needed and sufficiently high bonding energy is achieved after annealing at temperatures below 400 °C.

Overview

The decrease of temperature is based on the increase of bonding strength using plasma activation on clean wafer surfaces. Further, the increase is caused by elevation in amount of Si-OH groups, removal of contaminants on the wafer surface, the enhancement of viscous flow of the surface layer and the enhanced diffusivity of water and gas trapped at the interface. [2] Based on ambient pressure, two main surface activation fields using plasma treatment are established for wafer preprocessing to lower the temperatures during annealing. [3] To establish maximum surface energy at low temperatures (< 100 °C) numerous parameters for plasma activation and annealing need to be optimized according to the bond material. [4] Plasma activated bonding is based on process pressure divided into:

Atmospheric Pressure-Plasma Activated Bonding (AP-PAB)

This method is to ignite plasma without using a low pressure environment, so no expensive equipment for vacuum generation is needed. [1]

Atmospheric Pressure-Plasma Activated Bonding enables the possibility to ignite plasma at specific local areas or the whole surface of the substrate. Between the two electrodes plasma gas is ignited via alternating voltage. [3]

The wafer pairs pass the following process flow:

  1. RCA cleaning
  2. Surface activation at atmospheric pressure
    • Treatment duration ~ 40 s
    • Process gases used for silicon
      • Synthetic air (80 vol.-% N2 + 20 vol.-% O2)
      • Oxygen (O2)
    • Process gases used for glass or LiTaO3
      • Ar/H2 (90 vol.-% Ar + 10 vol.-% H2)
      • Humid oxygen (O2dH2O)
  3. Rinsing in de-ionized water
    • Treatment duration 10 minutes
    • Reduction of particle concentration
  4. Pre-bonding at room temperature
  5. Annealing (room temperature to 400 °C)

The optimal gas mixture for the plasma treatment is depending on the annealing temperature. Furthermore, treatment with plasma is suitable to prevent bond defects during the annealing procedure. [5]

If using glass, based on the high surface roughness, a chemical-mechanical planarization (CMP) step after rinsing is necessary to improve the bonding quality. The bond strength is characterized by fracture toughness determined by micro chevron tests. Plasma activated wafer bonds can achieve fracture toughnesses that are comparable to bulk material. [3]

Dielectric barrier discharge (DBD)

Scheme of dielectric barrier discharge B-pab-dielectricbarrierdischarge.png
Scheme of dielectric barrier discharge

The usage of dielectric barrier discharge enables a stable plasma at atmospheric pressure. To avoid sparks, a dielectric has to be fixed on one or both electrodes. The shape of the electrode is similar to the substrate geometry used to cover the entire surface. The principle of an AP-activation with one dielectric barrier is shown in figure "Scheme of dielectric barrier discharge". [1]

The activation equipment consists of the grounded chuck acting as wafer carrier and an indium tin oxide (ITO) coated glass electrode. Further, the glass substrate is used as dielectric barrier and the discharge is powered by a corona generator. [2]

Low Pressure-Plasma Activated Bonding (LP-PAB)

The Low Pressure-Plasma Activated Bonding operates in fine vacuum (0.1 – 100 Pa) with a continuous gas flow. This procedure requires:

The plasma exposed surface is activated by ion bombardment and chemical reactions through radicals. Electrons of the atmosphere move towards the HF electrode during its positive voltage. The most established frequency of the HF electrode is 13.56 MHz.

Further, the electrons are not able to leave the electrode within the positive half wave of applied voltage, so the negative electrode is charged up to 1000 V (bias voltage). [2] The gap between the electrode and the chuck is filled with plasma gas. The moving electrons of the atmosphere are banging into the plasma gas atoms and hit out electrons. [6] Due to its positive orientation the massive ions, that are not able to follow the HF field, move to the negatively charged electrode, where the wafer is placed. Within those environment the surface activation is based on the striking ions and radicals interacting with the surface of the wafer (compare to figure "Scheme of a plasma reactor for low pressure plasma activated bonding"). [2]

The surface activation with plasma at low pressure is processed in the following steps: [7]

  1. RCA cleaning
  2. Surface activation at low pressure
    • Treatment duration ~ 30–60 s
    • Process gases (N2, O2)
  3. Rinsing in de-ionized water
    • Treatment duration 10 min
    • Reduction of particle concentration
  4. Pre-bonding at room temperature
  5. Annealing (room temperature to 400 °C)

Reactive ion etching (RIE)

Scheme of a plasma reactor for low pressure plasma activated bonding B-pab-plasmareactorlpplasmaactivation.png
Scheme of a plasma reactor for low pressure plasma activated bonding

The RIE mode is used in dry etching processes and through reduction of parameters, i.e. HF power, this method is usable for surface activation.

The electrode attached to the HF-Generator is used as carrier of the wafer. Following, the surfaces of the wafers charge up negatively caused by the electrons and attract the positive ions of the plasma. The plasma ignites in the RIE-reactor (shown in figure "Scheme of a plasma reactor for low pressure plasma activated bonding").

The maximal bond strength is achieved with nitrogen and oxygen as process gases and is sufficiently high with a homogeneous dispersion over the wafers after annealing at 250 °C. The bond energy is characterized > 200 % of non-activated reference wafer annealed at the same temperature. The surface activated wafer pair has 15% less bond energy compared to a high temperature bonded wafer pair. Annealing at 350 °C results in bonding strengths similar to high-temperature bonding. [7]

Remote plasma

Remote plasma system B-pab-remoteplasmasystem.png
Remote plasma system

The procedure of remote plasma is based on creating plasma in a separate side chamber. The input gases enter the remote plasma source and are transported to the main process chamber to react. A scheme of the system is shown in figure "Remote plasma system".

Remote plasma is using chemical components where mainly neutral radicals are reacting with the surface. The advantage of this process is less damaged surface through missing ion bombardment. Further, the plasma exposure times could be arranged longer than with, e.g. RIE method. [8]

Sequential plasma (SPAB)

The wafers are activated with short RIE plasma followed by a radical treatment in one reactor chamber. An additional microwave source and an ion trapping metal plate are used for the generation of radicals. The effect of plasma on the surface changes from chemical/physical to chemical plasma treatment. This is based on the reactions between radicals and atoms on the surface.

Technical specifications

Materials
  • Si
  • SiO2
  • Glass-substrate
  • Lithium-tantalate (LiTaO3)
  • ...
Temperature
  • Room temperature – 400 °C
Advantages
  • high bonding strength
  • high temperature stability
  • process compatibility to semiconductor technology
  • feasibility at vacuum or different atmospheric gases
Drawbacks
  • high standards in surface geometry
  • high standards in roughness
Researches
  • hybrids (simultaneous metal and SFB)
  • bonding at T < 200 °C
  • completely dry process including pre-conditioning

Related Research Articles

Microelectromechanical systems Very small devices that incorporate moving components

Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems and the related micromechatronics and microsystems constitute the technology of microscopic devices, particularly those with moving parts. They merge at the nanoscale into nanoelectromechanical systems (NEMS) and nanotechnology. MEMS are also referred to as micromachines in Japan and microsystem technology (MST) in Europe.

Corona discharge Electrical discharge brought on by the ionization of a fluid such as air surrounding a conductor that is electrically charged

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same property as a gas discharge lamp.

Reactive-ion etching Method used to relatively precisely remove material in a controlled and fine fashion

Reactive-ion etching (RIE) is an etching technology used in microfabrication. RIE is a type of dry etching which has different characteristics than wet etching. RIE uses chemically reactive plasma to remove material deposited on wafers. The plasma is generated under low pressure (vacuum) by an electromagnetic field. High-energy ions from the plasma attack the wafer surface and react with it.

Corona treatment

Corona treatment is a surface modification technique that uses a low temperature corona discharge plasma to impart changes in the properties of a surface. The corona plasma is generated by the application of high voltage to an electrode that has a sharp tip. The plasma forms at the tip. A linear array of electrodes is often used to create a curtain of corona plasma. Materials such as plastics, cloth, or paper may be passed through the corona plasma curtain in order to change the surface energy of the material. All materials have an inherent surface energy. Surface treatment systems are available for virtually any surface format including dimensional objects, sheets and roll goods that are handled in a web format. Corona treatment is a widely used surface treatment method in the plastic film, extrusion, and converting industries.

Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (plasma) of an appropriate gas mixture being shot at a sample. The plasma source, known as etch species, can be either charged (ions) or neutral. During the process, the plasma generates volatile etch products at room temperature from the chemical reactions between the elements of the material etched and the reactive species generated by the plasma. Eventually the atoms of the shot element embed themselves at or just below the surface of the target, thus modifying the physical properties of the target.

Plasma activation is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the introduction of functional groups on the surface of exposed materials. It is widely used in industrial processes to prepare surfaces for bonding, gluing, coating and painting. Plasma processing achieves this effect through a combination of reduction of metal oxides, ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups. Importantly, the plasma activation can be performed at atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. Thus, the surface functionalization is achieved without expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.

Plasma-enhanced chemical vapor deposition

Plasma-enhanced chemical vapor deposition (PECVD) is a chemical vapor deposition process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Chemical reactions are involved in the process, which occur after creation of a plasma of the reacting gases. The plasma is generally created by radio frequency (RF) frequency or direct current (DC) discharge between two electrodes, the space between which is filled with the reacting gases.

Dielectric barrier discharge

Dielectric-barrier discharge (DBD) is the electrical discharge between two electrodes separated by an insulating dielectric barrier. Originally called silent (inaudible) discharge and also known as ozone production discharge or partial discharge, it was first reported by Ernst Werner von Siemens in 1857. On right, the schematic diagram shows a typical construction of a DBD wherein one of the two electrodes is covered with a dielectric barrier material. The lines between the dielectric and the electrode are representative of the discharge filaments, which are normally visible to the naked eye. Below this, the photograph shows an atmospheric DBD discharge occurring in between two steel electrode plates, each covered with a dielectric (mica) sheet. The filaments are columns of conducting plasma, and the foot of each filament is representative of the surface accumulated charge.

Adhesive bonding describes a wafer bonding technique with applying an intermediate layer to connect substrates of different types of materials. Those connections produced can be soluble or insoluble. The commercially available adhesive can be organic or inorganic and is deposited on one or both substrate surfaces. Adhesives, especially the well-established SU-8, and benzocyclobutene (BCB), are specialized for MEMS or electronic component production.

A microplasma is a plasma of small dimensions, ranging from tens to thousands of micrometers. Microplasmas can be generated at a variety of temperatures and pressures, existing as either thermal or non-thermal plasmas. Non-thermal microplasmas that can maintain their state at standard temperatures and pressures are readily available and accessible to scientists as they can be easily sustained and manipulated under standard conditions. Therefore, they can be employed for commercial, industrial, and medical applications, giving rise to the evolving field of microplasmas.

Plasma (physics) One of the four fundamental states of matter

Plasma is one of the four fundamental states of matter, and was first described by chemist Irving Langmuir in the 1920s. It consists of a gas of ions – atoms which have some of their orbital electrons removed – and free electrons. Plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field to the point where an ionized gaseous substance becomes increasingly electrically conductive. The resulting charged ions and electrons become influenced by long-range electromagnetic fields, making the plasma dynamics more sensitive to these fields than a neutral gas.

Plasma medicine is an emerging field that combines plasma physics, life sciences and clinical medicine. It is being studied in disinfection, healing, and cancer. Most of the research is in vitro and in animal models.

Plasma polymerization uses plasma sources to generate a gas discharge that provides energy to activate or fragment gaseous or liquid monomer, often containing a vinyl group, in order to initiate polymerization. Polymers formed from this technique are generally highly branched and highly cross-linked, and adhere to solid surfaces well. The biggest advantage to this process is that polymers can be directly attached to a desired surface while the chains are growing, which reduces steps necessary for other coating processes such as grafting. This is very useful for pinhole-free coatings of 100 picometers to 1 micrometre thickness with solvent insoluble polymers.

Direct bonding, or fusion bonding, describes a wafer bonding process without any additional intermediate layers. The bonding process is based on chemical bonds between two surfaces of any material possible meeting numerous requirements. These requirements are specified for the wafer surface as sufficiently clean, flat and smooth. Otherwise unbonded areas so called voids, i.e. interface bubbles, can occur.

Anodic bonding is a wafer bonding process to seal glass to either silicon or metal without introducing an intermediate layer; it is commonly used to seal glass to silicon wafers in electronics and microfluidics. This bonding technique, also known as field assisted bonding or electrostatic sealing, is mostly used for connecting silicon/glass and metal/glass through electric fields. The requirements for anodic bonding are clean and even wafer surfaces and atomic contact between the bonding substrates through a sufficiently powerful electrostatic field. Also necessary is the use of borosilicate glass containing a high concentration of alkali ions. The coefficient of thermal expansion (CTE) of the processed glass needs to be similar to those of the bonding partner.

Eutectic bonding

Eutectic bonding, also referred to as eutectic soldering, describes a wafer bonding technique with an intermediate metal layer that can produce a eutectic system. Those eutectic metals are alloys that transform directly from solid to liquid state, or vice versa from liquid to solid state, at a specific composition and temperature without passing a two-phase equilibrium, i.e. liquid and solid state. The fact that the eutectic temperature can be much lower than the melting temperature of the two or more pure elements can be important in eutectic bonding.

Glass frit bonding, also referred to as glass soldering or seal glass bonding, describes a wafer bonding technique with an intermediate glass layer. It is a widely used encapsulation technology for surface micro-machined structures, e.g., accelerometers or gyroscopes. This technique utilizes low melting glass and therefore provides various advantages including that viscosity of glass decreases with an increase of temperature. The viscous flow of glass has effects to compensate and planarize surface irregularities, convenient for bonding wafers with a high roughness due to plasma etching or deposition. A low viscosity promotes hermetically sealed encapsulation of structures based on a better adaption of the structured shapes. Further, the coefficient of thermal expansion (CTE) of the glass material is adapted to silicon. This results in low stress in the bonded wafer pair. The glass has to flow and wet the soldered surfaces well below the temperature where deformation or degradation of either of the joined materials or nearby structures occurs. The usual temperature of achieving flowing and wetting is between 450 and 550 °C.

Reactive bonding describes a wafer bonding procedure using highly reactive nanoscale multilayer systems as an intermediate layer between the bonding substrates. The multilayer system consists of two alternating different thin metallic films. The self-propagating exothermic reaction within the multilayer system contributes the local heat to bond the solder films. Based on the limited temperature the substrate material is exposed, temperature-sensitive components and materials with different CTEs, i.e. metals, polymers and ceramics, can be used without thermal damage.

An excimer lamp is a source of ultraviolet light produced by spontaneous emission of excimer (exciplex) molecules.

Piezoelectric direct discharge (PDD) plasma is a type of cold non-equilibrium plasma, generated by a direct gas discharge of a high voltage piezoelectric transformer. It can be ignited in air or other gases in a wide range of pressures, including atmospheric. Due to the compactness and the efficiency of the piezoelectric transformer, this method of plasma generation is particularly compact, efficient and cheap. It enables a wide spectrum of industrial, medical and consumer applications.

References

  1. 1 2 3 4 D. Wünsch and M. Wiemer and M. Gabriel and T. Gessner (2010). "Low temperature wafer bonding for microsystems using dielectric barrier discharge". MST News. 1/10. pp. 24–25.
  2. 1 2 3 4 M. Wiemer and J. Bräuer and D. Wünsch and T. Gessner (2010). "Reactive Bonding and Low Temperature Bonding of Heterogeneous Materials". ECS Transactions. 33 (4). pp. 307–318.
  3. 1 2 3 M. Wiemer and D. Wünsch and J. Bräuer and M. Eichler and P. Hennecke and T. Gessner (2009). "Low temperature bonding of hetero-materials using ambient pressure plasma activation". In R. Knechtel (ed.). WaferBond 2009: Conference on Wafer Bonding for Microsystems 3D- and Wafer Level Integration, Grenoble (France). pp. 73–74.
  4. M. Eichler and B. Michel and P. Hennecke and C.-P. Klages (2009). "Effects on Silanol Condensation during Low Temperature Silicon Fusion Bonding". Journal of the Electrochemical Society. 156 (10). pp. H786–H793.
  5. M. Eichler and B. Michel and M. Thomas and M. Gabriel and C.-P. Klages (2008). "Atmospheric-pressure plasma pretreatment for direct bonding of silicon wafers at low temperatures". Surface and Coatings Technology. 203 (5–7). pp. 826–829.
  6. G. Gerlach and W. Dötzel (March 2008). Ronald Pething (ed.). Introduction to Microsystem Technology: A Guide for Students (Wiley Microsystem and Nanotechnology). Wiley Publishing. ISBN   978-0-470-05861-9.
  7. 1 2 3 D. Wünsch and B. Müller and M. Wiemer and T. Gessner and H. Mischke (2010). "Aktivierung mittels Niederdruckplasma zur Herstellung von Si-Verbunden im Niedertemperatur-Bereich und deren Charakterisierung mittels Mikro-Chevron-Test". Technologien und Werkstoffe der Mikrosystem- und Nanotechnik (GMM-Fachbereicht Band 65). pp. 66–71. ISBN   978-3-8007-3253-1.
  8. 1 2 R. E. Belford and S. Sood (2009). "Surface activation using remote plasma for silicon to quartz wafer bonding". Microsystem Technologies. 15. pp. 407–412. doi:10.1007/s00542-008-0710-4.