Pleocyemata

Last updated

Pleocyemata
Temporal range: Devonian–recent
Potamon fluviatile08.jpg
Ovigerous female Potamon fluviatile with the pleon held open to show the eggs held on the pleopods
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Crustacea
Class: Malacostraca
Order: Decapoda
Suborder: Pleocyemata
Burkenroad, 1963
Infraorders

Pleocyemata is a suborder of decapod crustaceans, erected by Martin Burkenroad in 1963. [1] Burkenroad's classification replaced the earlier sub-orders of Natantia and Reptantia with the monophyletic groups Dendrobranchiata (prawns) and Pleocyemata. Pleocyemata contains all the members of the Reptantia (including crabs, lobsters, crayfish, and others), as well as the Stenopodidea (which contains the so-called "boxer shrimp" or "barber-pole shrimp"), and Caridea, which contains the true shrimp.

Contents

Anatomy

All members of the Pleocyemata are united by a number of features, the most important of which is that the fertilised eggs are incubated by the female, and remain stuck to the pleopods (swimming legs) until the zoea larvae are ready to hatch. It is this characteristic that gives the group its name. Pleocyemata also possess a lamellar gill structure as opposed to the branched found in the Dendrobranchiata.

Systematics

The cladogram below shows Pleocyemata as the sister clade to Dendrobranchiata within the larger order Decapoda, from analysis by Wolfe et al., 2019. [2]

Decapoda

Dendrobranchiata (prawns) Litopenaeus setiferus.png

Pleocyemata

Stenopodidea (boxer shrimp) Spongicola venustus.png

Procarididea

Caridea (true shrimp) Macrobrachium sp.jpg

Reptantia  (crawling/walking decapods)

Achelata (spiny lobsters, slipper lobsters) Panulirus argus.png

Polychelida (benthic crustaceans)

Astacidea (lobsters, crayfish) Lobster NSRW rotated2.jpg

Axiidea (mud shrimp, ghost shrimp, or burrowing shrimp)

Gebiidea (mud lobsters and mud shrimp)

Anomura (hermit crabs and others) Coenobita variabilis.jpg

Brachyura (crabs) Charybdis japonica.jpg


Pleocyemata comprises the following infraorders: [3]

The earliest fossil representative is the Devonian Palaeopalaemon . [4]

Related Research Articles

Caridea Infraorder of shrimp

The Caridea, commonly known as caridean shrimp or true shrimp, are an infraorder of shrimp within the order Decapoda. This infraorder contains all species of true shrimp. They are found widely around the world in both fresh and salt water. Many other animals with similar names – such as the mud shrimp of Axiidea and the boxer shrimp of Stenopodidea – are not true shrimp, but many have evolved features similar to true shrimp.

Dendrobranchiata Suborder of prawns

Dendrobranchiata is a suborder of decapods, commonly known as prawns. There are 540 extant species in seven families, and a fossil record extending back to the Devonian. They differ from related animals, such as Caridea and Stenopodidea, by the branching form of the gills and by the fact that they do not brood their eggs, but release them directly into the water. They may reach a length of over 330 millimetres (13 in) and a mass of 450 grams (1.0 lb), and are widely fished and farmed for human consumption.

Natantia Historic group of crustaceans

Natantia is an obsolete taxon of decapod crustaceans, comprising those families that move predominantly by swimming – the shrimp, prawns (Dendrobranchiata) and boxer shrimp. The remaining Decapoda were placed in the Reptantia, and consisted of crabs, lobsters and other large animals that move chiefly by walking along the bottom. The division between Natantia and Reptantia was replaced in 1963, when Martin Burkenroad erected the suborder Pleocyemata for those animals that brood their eggs on the pleopods, leaving Dendrobranchiata for the prawns. Under this system, Natantia is a paraphyletic group. Burkenroad's primary division of Decapoda into Dendrobranchiata and Pleocyemata has since been corroborated by molecular analyses.

Decapoda Order of crustaceans

The Decapoda or decapods are an order of crustaceans within the class Malacostraca, including many familiar groups, such as crabs, lobsters, crayfish, shrimp and prawns. Most decapods are scavengers. The order is estimated to contain nearly 15,000 species in around 2,700 genera, with around 3,300 fossil species. Nearly half of these species are crabs, with the shrimp and Anomura including hermit crabs, porcelain crabs, squat lobsters making up the bulk of the remainder. The earliest fossil decapod is the Devonian Palaeopalaemon.

Reptantia Suborder of crustaceans

Reptantia is a clade of decapod crustaceans named in 1880 which includes lobsters, crabs and many other well-known crustaceans.

Achelata Infraorder of crustaceans

The Achelata is an infra-order of the decapod crustaceans, holding the spiny lobsters, slipper lobsters and their fossil relatives.

Anomura Infraorder of crustaceans

Anomura is a group of decapod crustaceans, including hermit crabs and others. Although the names of many anomurans include the word crab, all true crabs are in the sister group to the Anomura, the Brachyura.

Stenopodidea Infraorder of crustaceans

The Stenopodidea or boxer shrimps are a small group of decapod crustaceans. Often confused with Caridea shrimp or Dendrobranchiata prawns, they are neither, belonging to their own group.

Astacidea Infraorder of crustaceans

Astacidea is an infraorder of decapod crustaceans including lobsters, crayfish, and their close relatives.

Thalassinidea Infraorder of crustaceans

Thalassinidea is a former infraorder of decapod crustaceans that live in burrows in muddy bottoms of the world's oceans. In Australian English, the littoral thalassinidean Trypaea australiensis is referred to as the yabby, frequently used as bait for estuarine fishing; elsewhere, however, they are poorly known, and as such have few vernacular names, "mud lobster" and "ghost shrimp" counting among them. The burrows made by thalassinideans are frequently preserved, and the fossil record of thalassinideans reaches back to the late Jurassic.

Eucarida Superorder of crustaceans

Eucarida is a superorder of the Malacostraca, a class of the crustacean subphylum, comprising the decapods, krill, Amphionides and Angustidontida. They are characterised by having the carapace fused to all thoracic segments, and by the possession of stalked eyes.

Axiidea Infraorder of crustaceans

Axiidea is an infraorder of decapod crustaceans. They are colloquially known as mud shrimp, ghost shrimp, or burrowing shrimp; however, these decapods are only distantly related to true shrimp. Axiidea and Gebiidea are divergent infraoders of the former infraorder Thalassinidea. These infraorders have converged ecologically and morphologically as burrowing forms. Based on molecular evidence as of 2009, it is now widely believed that these two infraorders represent two distinct lineages separate from one another. Since this is a recent change, much of the literature and research surrounding these infraorders still refers to the Axiidea and Gebiidea in combination as "thalassinidean" for the sake of clarity and reference. This division based on molecular evidence is consistent with the groupings proposed by Robert Gurney in 1938 based on larval developmental stages.

Thoracotremata Clade of crabs

Thoracotremata is a clade of crabs, comprising those crabs in which the genital openings in both sexes are on the sternum, rather than on the legs. It comprises 17 families in four superfamilies .

Cyclodorippoida is a group of crabs, ranked as a section. It contains the single superfamily Cyclodorippoidea, which holds three families, Cyclodorippidae, Cymonomidae and Phyllotymolinidae.

Polychelida Infraorder of crustaceans

Polychelida is an infraorder of decapod crustaceans. Fossil representatives are known dating from as far back as the Upper Triassic. A total of 38 extant species, all in the family Polychelidae, and 55 fossil species have been described.

Gebiidea Infraorder of crustaceans

Gebiidea is an infraorder of decapod crustaceans. Gebiidea and Axiidea are divergent infraoders of the former infraorder Thalassinidea. These infraorders have converged ecologically and morphologically as burrowing forms. Based on molecular evidence as of 2009, it is now widely believed that these two infraorders represent two distinct lineages separate from one another. Since this is a recent change, much of the literature and research surrounding these infraorders still refers to the Axiidea and Gebiidea in combination as "thalassinidean" for the sake of clarity and reference. This division based on molecular evidence is consistent with the groupings proposed by Robert Gurney in 1938 based on larval developmental stages.

Procarididea is an infraorder of decapods, comprising only eleven species. Six of these are in the genera Procaris and Vetericaris, which together make up the family Procarididae. The remaining five species are only known from fossils and belong to the genus Udora, which cannot yet be assigned to any family. Use of molecular phylogenetics suggests that the procarids are the sister group to the Caridea, and are thus recognised as a separate infraorder, Procarididea.

Martin Burkenroad American marine biologist

Martin David Burkenroad was an American marine biologist. He specialized in decapod crustaceans and fisheries science.

Shrimp Decapod crustaceans

Shrimp are decapod crustaceans with elongated bodies and a primarily swimming mode of locomotion – most commonly Caridea and Dendrobranchiata. More narrow definitions may be restricted to Caridea, to smaller species of either group or to only the marine species. Under a broader definition, shrimp may be synonymous with prawn, covering stalk-eyed swimming crustaceans with long, narrow muscular tails (abdomens), long whiskers (antennae), and slender legs. Any small crustacean which resembles a shrimp tends to be called one. They swim forward by paddling with swimmerets on the underside of their abdomens, although their escape response is typically repeated flicks with the tail driving them backwards very quickly. Crabs and lobsters have strong walking legs, whereas shrimp have thin, fragile legs which they use primarily for perching.

Faxonella creaseri is a species of crayfish which belongs to the larger group of so-called decapoda. It is one of the four species in the family Faxonella.

References

  1. Burkenroad, M. D. (1963). "The evolution of the Eucarida (Crustacea, Eumalacostraca), in relation to the fossil record". Tulane Studies in Geology. 2 (1): 1–17.
  2. Wolfe, Joanna M.; Breinholt, Jesse W.; Crandall, Keith A.; Lemmon, Alan R.; Lemmon, Emily Moriarty; Timm, Laura E.; Siddall, Mark E.; Bracken-Grissom, Heather D. (24 April 2019). "A phylogenomic framework, evolutionary timeline and genomic resources for comparative studies of decapod crustaceans". Proceedings of the Royal Society B. 286 (1901). doi: 10.1098/rspb.2019.0079 . PMC   6501934 . PMID   31014217.
  3. Sammy De Grave; N. Dean Pentcheff; Shane T. Ahyong; et al. (2009). "A classification of living and fossil genera of decapod crustaceans" (PDF). Raffles Bulletin of Zoology . Suppl. 21: 1–109.
  4. Robert P. D. Crean (November 14, 2004). "Order Decapoda: Fossil record and evolution". University of Bristol. Archived from the original on February 29, 2012. Retrieved January 2, 2010.