Prorotodactylus Temporal range: | |
---|---|
Trace fossil classification ![]() | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Reptilia |
Clade: | Archosauromorpha |
Clade: | Crocopoda |
Clade: | Archosauriformes |
Ichnofamily: | † Prorotodactylidae |
Ichnogenus: | † Prorotodactylus Ptaszynski, 2000 |
Type ichnospecies | |
†Prorotodactylus mirus Ptaszynski, 2000 | |
Ichnospecies | |
|
Prorotodactylus is an archosauriform ichnogenus known from fossilized footprints found in Europe. The definitive tracemaker of this ichnotaxon has been debated among paleontologists. Some researchers have suggested that prints may have been made by a dinosauromorph that was a precursor to the dinosaurs, possibly closely related to Lagerpeton , but others have questioned the dinosauromorph affinites with its relation to Lagerpeton and suggested that they represent trace fossils of other archosauriforms such as euparkeriids or pterosauromorphs. Prorotodactylus is the only ichnogenus within the ichnofamily Prorotodactylidae. Three ichnospecies are known: P. mirus (the type ichnospecies), P. lutevensis and P. mesaxonichnus.
Prorotodactylus mirus, the type ichnospecies, has been found in the Holy Cross Mountains in Poland. It was named in 2000, with the specific name meaning "strange" in Latin in reference to unusual features in forefoot imprints. [1] [2] A second ichnospecies, P. lutevensis, was erected along with the type. P. lutevensis is from the Middle Triassic of France and was first described in 1984 as Rhynchosauroides lutevensis . It was reassigned on the basis of many similarities with P. mirus. [1]
Prorotodactylus mirus tracks have been found in many localities. The holotype specimen, a set of left forefoot and hind foot imprints, are from the Wióry locality near the town of Ostrowiec Świętokrzyski. The footprints were located in the Labyrinthodontidae Beds of the Middle Buntsandstein, or Bunter sandstone. [1] Recent studies of the biostratigraphy and magnetostratigraphy of the area have shown that the Wióry site is Early Spathian (Early to Late Olenekian) in age. More tracks have been found from Wióry since the initial description of P. mirus, and have shown that P. mirus was a rare component of the ichnofauna. This ichnospecies is also known from the Stryczowice locality, which has a much more diverse assemblage of ichnofossils than Wióry. Like in Wióry, Prorotodactylus tracks are rare in Stryczowice. [2]
In 2017, Mujal and colleagues described a third ichnospecies, P. mesaxonichnus. The fossils are discovered from the late Early Triassic strata of the Catalan Pyrenees in the Iberian Peninsula. [3]
Prorotodactylus tracks were made by a small quadrupedal animal. The tracks are long-striding, showing that the hind feet often overstepped the forefeet, or were placed on the same line. The first four digits of the hind foot, or pes, are clawed. Digits II-IV are angled slightly away from digit I, with digit IV being the longest. Digit V is smaller than the other four and is placed farther back on the foot, occurring only occasionally in footprints. The fifth digit of the forefoot, or manus, is separate from the rest of the digits, placed behind digits I-IV and angled outward. Digit III is the longest, with digits II and I being progressively smaller. [2]
The fifth digits of both the manus and pes are not rotated in Prorotodactylus as they are in the related ichnogenus Rotodactylus. The shape of the manus differentiates Prorotodactylus from members of the family Rhynchosauridae, which have also been found in Early Triassic Polish strata. The manus of Prorotodactylus is similar in shape to the pes of members of the ichnofamily Chirotheridae. [1]
Some paleontologists suggest that the Prorotodactylus tracks were probably made by a small dinosauromorph. The ichnogenus possesses several distinctively archosaurian features, such as narrow trackways and a pace angulation of 130°. The pace angulation, or the angle made between two successive footprints, shows that Prorotodactylus had an erect stance rather than a sprawling one. Dinosauromorph characteristics include digitigrade prints (in which only the digits touch the ground), bunched metatarsals, a reduction of the first and fifth digits, and the posterior deflection of the fifth digit. Prorotodactylus prints share several characteristics with the dinosauromorph genus Lagerpeton from Argentina, indicating that the print maker was closely related to Lagerpeton. The three central digits of the foot are parallel, a feature otherwise only seen in Lagerpeton. Digit IV is the longest digit in the foot of both Prorotodactylus and Lagerpeton. In both animals, there is a progressive decrease in size from digits IV to II, with digit III angled relative to the midline. [2]
The bunched metatarsals in Prorotodactylus are a synapomorphy of the clade Avemetatarsalia. The metatarsal pads, preserved only in deeply imprinted footprints, are united in a single unit. This makes the foot act as a single unit rather than a collection of splayed digits. In ichnotaxa similar in appearance to Prorotodactylus, the digits are not parallel to one another and the posterior margin of the metatarsal pads is curved, making the digits splay. [2]
Trackways indicate that the maker of Prorotodactylus footprints was quadrupedal. However, the overstep of the hind feet beyond the front feet indicates that the forelimbs were reduced, a characteristic of bipedal animals. Another Polish dinosauromorph ichnogenus, Sphingopus , occurs later in the Triassic and is fully bipedal. The transition to bipedality probably occurred between Prorotodactylus and Sphingopus. During this transition, body size also increased, as Sphingopus tracks are larger than those of Prorotodactylus. [2]
The different shapes of the manus and pes of Prorotodactylus may show different forms of specialization. The forelimbs, which were reduced, may have been used for hunting, grasping, or manipulating. The bunched metatarsals of the hind feet may have enabled the metatarsals to act as a lever, along with the stylopodium, or upper leg, and the zeugopodium, or lower leg. This would have enabled facultative bipedalism in Prorotodactylus, and a wholly bipedal gait in later dinosauromorphs. Pace angulation is relatively high in Prorotodactylus, and increased as bipedalism becomes obligate in later dinosauromorphs. [1]
Fossils of Prorotodactylus date back to the early Olenekian stage of the Early Triassic, so if they indeed represent a dinosauromorph, its presence during this time may extend the range of the dinosaur stem lineage to the start of the Early Triassic, soon after the Permian-Triassic extinction event. [1] As a possible quadrupedal basal dinosauromorph, it also raises questions debating the theory that bipedalism is ancestral to dinosaurs. [2] However, other researchers have doubted the dinosauromorph affinites of Prorotodactylus and its possible relation to Lagerpeton due to significant morphological disparities, and it is noted that the fossils resemble more of a protorosaurian. [4] The describers of P. mesaxonichnus suggested that the trackmaker would have been a basal archosauriform such as the Euparkeriidae. [3] Additionally, Lagerpeton has recently been suggested to be a pterosauromorph, [5] and the pes of the pterosauromorph Scleromochlus might closely correspond to Prorotodactylus. [6]
Bipedalism is a form of terrestrial locomotion where an animal moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.
Euparkeria is an extinct genus of archosauriform reptile from the Triassic of South Africa. Euparkeria is close to the ancestry of Archosauria, the reptile group that includes crocodilians, pterosaurs, and dinosaurs.
Grallator is an ichnogenus which covers a common type of small, three-toed print made by a variety of bipedal theropod dinosaurs. Grallator-type footprints have been found in formations dating from the Early Triassic through to the early Cretaceous periods. They are found in the United States, Canada, Europe, India, Australia, Brazil and China, but are most abundant on the east coast of North America, especially the Triassic and Early Jurassic formations of the northern part of the Newark Supergroup. The name Grallator translates into "stilt walker", although the actual length and form of the trackmaking legs varied by species, usually unidentified. The related term "Grallae" is an ancient name for the presumed group of long-legged wading birds, such as storks and herons. These footprints were given this name by their discoverer, Edward Hitchcock, in 1858.
Lagerpeton is a genus of lagerpetid avemetatarsalian, comprising a single species, L. chanarensis. First described from the Chañares Formation of Argentina by A. S. Romer in 1971, Lagerpeton's anatomy is somewhat incompletely known, with fossil specimens accounting for the pelvic girdle, hindlimbs, posterior presacral, sacral and anterior caudal vertebrae. Skull and shoulder material has also been described.
Teleocrater is a genus of avemetatarsalian archosaur from the Middle Triassic Manda Formation of Tanzania. The name was coined by English paleontologist Alan Charig in his 1956 doctoral dissertation, but was only formally published in 2017 by Sterling Nesbitt and colleagues. The genus contains the type and only species T. rhadinus. Uncertainty over the affinities of Teleocrater have persisted since Charig's initial publication; they were not resolved until Nesbitt et al. performed a phylogenetic analysis. They found that Teleocrater is most closely related to the similarly enigmatic Yarasuchus, Dongusuchus, and Spondylosoma in a group that was named the Aphanosauria. Aphanosauria was found to be the sister group of the Ornithodira, the group containing dinosaurs and pterosaurs.
Dinosauromorpha is a clade of avemetatarsalians that includes the Dinosauria (dinosaurs) and some of their close relatives. It was originally defined to include dinosauriforms and lagerpetids, with later formulations specifically excluding pterosaurs from the group. Birds are the only dinosauromorphs which survive to the present day.
Avemetatarsalia is a clade of diapsid reptiles containing all archosaurs more closely related to birds than to crocodilians. The two most successful groups of avemetatarsalians were the dinosaurs and pterosaurs. Dinosaurs were the largest terrestrial animals for much of the Mesozoic Era, and one group of small feathered dinosaurs has survived up to the present day. Pterosaurs were the first flying vertebrates and persisted through the Mesozoic before dying out at the Cretaceous-Paleogene (K-Pg) extinction event. Both dinosaurs and pterosaurs appeared in the Triassic Period, shortly after avemetatarsalians as a whole. The name Avemetatarsalia was first established by British palaeontologist Michael Benton in 1999. An alternate name is Pan-Aves, or "all birds", in reference to its definition containing all animals, living or extinct, which are more closely related to birds than to crocodilians.
Pterosauromorpha is one of the two basic divisions of Ornithodira that includes pterosaurs and all taxa that are closer to them than to dinosaurs and their close relatives. In addition to pterosaurs, Pterosauromorpha also includes the basal clade Lagerpetidae and some other Late Triassic ornithodirans.
Eubrontes is the name of fossilised dinosaur footprints dating from the Late Triassic and Early Jurassic. They have been identified from France, Poland, Slovakia, Czech Republic, Italy, Spain, Sweden, Australia (Queensland), US, India, China and Brazil (South).
Otozoum is an extinct ichnogenus of sauropodomorph dinosaur from the Late Triassic-Middle Jurassic sandstones. Footprints were made by heavy, bipedal or, sometimes, quadrupedal animals with a short stride that walked on four toes directed forward. These footprints are relatively large, over 20 cm in pes length. Otozoum differs from Plateosaurus by having a notable homopody.
Aardonyx is a genus of basal sauropodomorph dinosaur. It is known from the type species Aardonyx celestae found from the Early Jurassic Elliot Formation of South Africa. A. celestae was named after Celeste Yates, who prepared much of the first known fossil material of the species. It has arm features that are intermediate between basal sauropodomorphs and more derived sauropods.
Macropodosaurus is an ichnogenus of therizinosaurid footprints from the Late Cretaceous of Asia, North America and Poland. The ichnogenus is currently monotypic only including the type ichnospecies M. gravis, described and named in 1964.
Diodorus is a genus of silesaurid dinosauromorph that lived during the Late Triassic in what is now Morocco. Fossils were discovered in the Timezgadiouine Formation of the Argana Basin, and were used to name the new genus and species Diodorus scytobrachion. The genus name honors the mythological king Diodorus and the ancient historian Diodorus Siculus; the specific name is ancient Greek for 'leathery arm' and also honors the mythographer Dionysius Scytobrachion. The holotype specimen is a partial dentary bone (front of the lower jaw), and assigned specimens include isolated teeth, two humeri (upper arm bones), a metatarsal (foot bone), and femur (thigh bone).
The 20th century in ichnology refers to advances made between the years 1900 and 1999 in the scientific study of trace fossils, the preserved record of the behavior and physiological processes of ancient life forms, especially fossil footprints. Significant fossil trackway discoveries began almost immediately after the start of the 20th century with the 1900 discovery at Ipolytarnoc, Hungary of a wide variety of bird and mammal footprints left behind during the early Miocene. Not long after, fossil Iguanodon footprints were discovered in Sussex, England, a discovery that probably served as the inspiration for Sir Arthur Conan Doyle's The Lost World.
Chelichnus is an ichnogenus of Permian tetrapod footprint. The name means tortoise traces, because the shape of the prints was originally mistakenly thought to be produced by a tortoise. This is now known to be incorrect, as tortoises did not evolve until much later. It was first found in Corncockle Quarry in Dumfries, Scotland, and described by Rev. Henry Duncan.
Limnopus is an ichnogenus of ancient tetrapod footprint. Its footprints have been found in Moscovian aged-rocks situated in Alveley, Shropshire, England, Colorado and West Virginia.
Gwyneddichnium is an ichnogenus from the Late Triassic of North America and Europe. It represents a form of reptile footprints and trackways, likely produced by small tanystropheids such as Tanytrachelos. Gwyneddichnium includes a single species, Gwyneddichnium major. Two other proposed species, G. elongatum and G. minore, are indistinguishable from G. major apart from their smaller size and minor taphonomic discrepancies. As a result, they are considered junior synonyms of G. major.
Protochirotherium, also known as Protocheirotherium, is a Late Permian?-Early Triassic ichnotaxon consisting of five-fingered (pentadactyl) footprints and whole tracks, discovered in Germany and later Morocco, Poland and possibly also Italy. The type ichnospecies is P. wolfhagenense, discovered by R. Kunz in 1999 alongside Chirotherium tracks, was named and described in 2004 and re-evaluated in 2007; a second ichnospecies, P. hauboldi, also exists, which was initially described as an ichnospecies of Brachychirotherium. Protochirotherium-like prints have also been documented from the Late Permian of Italy, possibly representing the oldest known fossils of mesaxonic archosauromorphs.
Kongonaphon is an extinct genus of lagerpetid avemetatarsalians from the Middle to Late Triassic of Madagascar. It contains a single species, Kongonaphon kely, which is known from a fragmentary partial skeleton. This fossil hails from the late Ladinian or early Carnian-age "basal Isalo II beds". As the first lagerpetid found in Africa, Kongonaphon extends the range of the family significantly. It possessed a combination of features from various other lagerpetids, but developed particularly long and slender leg bones. Kongonaphon is also the first lagerpetid for which fossils of the snout and teeth are known. It was likely an insectivore based on the shape and texture of its teeth.
Wakinyantanka is an ichnogenus of footprint produced by a large theropod dinosaur from the Late Cretaceous Hell Creek Formation of South Dakota. Wakinyantanka tracks are large with three long, slender toes with occasional impressions of a short hallux and narrow metatarsals. Wakinyantanka was the first dinosaur track to be discovered in the Hell Creek Formation, which remain rare in the preservational conditions of the rocks. The potential trackmakers may be a large oviraptorosaur or a small tyrannosaurid.