Pyranoanthocyanin

Last updated

The pyranoanthocyanins are a type of pyranoflavonoids. They are chemical compounds formed in red wines by yeast during fermentation processes [1] or during controlled oxygenation processes [2] during the aging of wine. [3] The different classes of pyranoanthocyanins are carboxypyranoanthocyanins, methylpyranoanthocyanins, pyranoanthocyanin-flavanols, pyranoanthocyanin-phenols, portisins, oxovitisins and pyranoanthocyanin dimers; their general structure includes an additional ring (formed between the OH group at C-5 and the C-4 of the anthocyanin pyranic ring) that may have different substituents linked directly at C-10. [4]

The pyranoflavonoids are a type of flavonoids possessing a pyran group.

Red wine type of wine

Red wine is a type of wine made from dark-colored (black) grape varieties. The actual color of the wine can range from intense violet, typical of young wines, through to brick red for mature wines and brown for older red wines. The juice from most purple grapes is greenish-white, the red color coming from anthocyan pigments present in the skin of the grape; exceptions are the relatively uncommon teinturier varieties, which produce a red-colored juice. Much of the red-wine production process therefore involves extraction of color and flavor components from the grape skin.

Yeast in winemaking

The role of yeast in winemaking is the most important element that distinguishes wine from grape juice. In the absence of oxygen, yeast converts the sugars of wine grapes into alcohol and carbon dioxide through the process of fermentation. The more sugars in the grapes, the higher the potential alcohol level of the wine if the yeast are allowed to carry out fermentation to dryness. Sometimes winemakers will stop fermentation early in order to leave some residual sugars and sweetness in the wine such as with dessert wines. This can be achieved by dropping fermentation temperatures to the point where the yeast are inactive, sterile filtering the wine to remove the yeast or fortification with brandy or neutral spirits to kill off the yeast cells. If fermentation is unintentionally stopped, such as when the yeasts become exhausted of available nutrients and the wine has not yet reached dryness, this is considered a stuck fermentation.

Contents

Examples

Micro-oxygenation is a process used in winemaking to introduce oxygen into wine in a controlled manner. Developed in 1991 by Patrick DuCournau, working with the exceptionally tannic grape Tannat in Madiran, the process gained usage in modern winemaking following the 1996 authorization by the European Commission. Today, the technique is widely employed in Bordeaux, as well as at least 11 different countries, including the United States and Chile.

Vitisin A (pyranoanthocyanin) chemical compound

Vitisin A is a natural phenol found in red wines. It is a pyranoanthocyanin.

Vitisin B (pyranoanthocyanin) chemical compound

Vitisin B is a natural phenol found in red wines. It is a pyranoanthocyanin.

Vitisin A type

Vitisin B type

Oxovitisins

Oxovitisins are pyranone-anthocyanin derivatives [8]

Oxovitisin group of chemical compounds

Oxovitisins are a type of pyranoanthocyanin with a pyranone (2-pyrone) component found in aged Port wines. They do not contain an oxonium ion component, as anthocyanins do. Therefore they do not have an absorption maximum at 520 nm. Oxovitisins are stable yellowish pigments with similar unique spectral features, displaying only a pronounced broad band around 370 nm in the UV−vis spectrum.

Oxovitisin A chemical compound

Oxovitisin A is an oxovitisin, a type of pyranoanthocyanin with a pyranone (2-pyrone) component. It is found in aged Port wines. It does not contain an oxonium ion component, as anthocyanins do. Therefore it does not have an absorption maximum at 520 nm. Oxovitisins are stable yellowish pigments with similar unique spectral features, displaying only a pronounced broad band around 370 nm in the UV−vis spectrum. It is an oxidative derivative of carboxypyranomalvidin-3-glucoside.

Pinotin type

Flavanyl-pyranoanthocyanin type

Related Research Articles

Anthocyanidin chemical compound

Anthocyanidins are common plant pigments. They are the sugar-free counterparts of anthocyanins based on the flavylium ion or 2-phenylchromenylium, which is a type of oxonium ion. They form a large group of polymethine dye. In particular anthocyanidins are salt derivatives of the 2-phenylchromenylium cation, also known as flavylium cation. As shown in the figure below, the phenyl group at the 2-position can carry different substituents. The counterion of the flavylium cation is mostly chloride. With this positive charge, the anthocyanidins differ from other flavonoids. 31 monomeric anthocyanidins have been properly identified, most of the anthocyanins are based on cyanidin (30%), delphinidin (22%), and pelargonidin (18%), respectively. Altogether 20% of the anthocyanins are based on the three common anthocyanidins that are methylated. Around 3, 3, and 2% of the anthocyanins or anthocyanidins are labeled as 3-desoxyanthocyanidins, rare methylatedanthocyanidins, and 6-hydroxyanthocyanidins, respectively.

<i>Vitis vinifera</i> species of plant

Vitis vinifera, the common grape vine, is a species of Vitis, native to the Mediterranean region, central Europe, and southwestern Asia, from Morocco and Portugal north to southern Germany and east to northern Iran. There are currently between 5,000 and 10,000 varieties of Vitis vinifera grapes though only a few are of commercial significance for wine and table grape production.

Delphinidin chemical compound

Delphinidin is an anthocyanidin, a primary plant pigment, and also an antioxidant. Delphinidin gives blue hues to flowers in the genera Viola and Delphinium. It also gives the blue-red color of the grape that produces Cabernet Sauvignon, and can be found in cranberries and Concord grapes as well as pomegranates, and bilberries.

Cyanidin chemical compound

Cyanidin is a natural organic compound. It is a particular type of anthocyanidin. It is a pigment found in many red berries including grapes, bilberry, blackberry, blueberry, cherry, cranberry, elderberry, hawthorn, loganberry, açai berry and raspberry. It can also be found in other fruits such as apples and plums, and in red cabbage and red onion. It has a characteristic reddish-purple color, though this can change with pH; solutions of the compound are red at pH < 3, violet at pH 7-8, and blue at pH > 11. In certain fruits, the highest concentrations of cyanidin are found in the seeds and skin. In a recent study, cyanidin was found to be a potent sirtuin 6 (SIRT6) activator.

Malvidin chemical compound

Malvidin is an O-methylated anthocyanidin, the 3',5'-methoxy derivative of delphinidin. As a primary plant pigment, its glycosides are highly abundant in nature.

Phenolic content in wine

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

Petunidin chemical compound

Petunidin (Pt), like Europinidin and Malvidin, is derived from Delphinidin and is an O-methylated anthocyanidin of the 3-hydroxy type. It is a natural organic compound, a dark-red or purple water-soluble pigment found in many redberries including chokeberries, Saskatoon berries or different species of grape, and also part of the pigments responsible for the petal colors in many flowers. This pigment gives the Indigo Rose tomatoes the majority of their deep purple color when the fruits are exposed to sunlight. The name of the molecule itself is derived from the word Petunia.

Wine color

The color of wine is one of the most easily recognizable characteristics of wines. Color is also an element in wine tasting since heavy wines generally have a deeper color. The accessory traditionally used to judge the wine color was the tastevin, a shallow cup allowing one to see the color of the liquid in the dim light of a cellar. The color is an element in the classification of wines.

Oenin chemical compound

Oenin is an anthocyanin. It is the 3-glucoside of malvidin. It is one of the red pigments found in the skin of purple grapes and in wine.

Chrysanthemin chemical compound

Chrysanthemin is an anthocyanin. It is the 3-glucoside of cyanidin.

Copigmentation is a phenomenon where pigmentation due to anthocyanidins is reinforced by the presence of other colorless flavonoids known as cofactors or “copigments”. This occurs by the formation of a non-covalently-linked complex.

4-Vinylphenol is a phenolic compound found in wine and beer. It is produced by the spoilage yeast Brettanomyces. When it reaches concentrations greater than the sensory threshold, it can give the wine aromas described as barnyard, medicinal, band-aids, and mousy. In wine, 4-vinylphenol can react with other molecules, such as anthocyanidins, to produce new chemical compounds. In white wines vinylphenols are dominant whereas, in red wines, it is the corresponding ethyl phenols.

Malvidin glucoside-ethyl-catechin chemical compound

Malvidin glucoside-ethyl-catechin is a flavanol-anthocyanin adduct. Flavanol-anthocyanin adducts are formed during wine ageing through reactions between anthocyanins and tannins present in grape, with yeast metabolites such as acetaldehyde. Acetaldehyde-induced reactions yield ethyl-linked species such as malvidin glucoside-ethyl-catechin.

Flavanol-anthocyanin adduct class of chemical compounds

Flavanol-anthocyanin adducts are formed during wine ageing through reactions between anthocyanins and tannins present in grape, with yeast metabolites such as acetaldehyde. Acetaldehyde-induced reactions yield ethyl-linked species such as malvidin glucoside-ethyl-catechin.

Malvidin-3-<i>O</i>-(6-<i>p</i>-coumaroyl)glucoside chemical compound

Malvidin-3-O-(6-p-coumaroyl)glucoside is a p-coumaroylated anthocyanin found in grape and wine. There are two forms with the cis and trans isomers of p-coumaric acid.

<i>p</i>-Coumaroylated anthocyanin class of chemical compounds

p-Coumaroylated anthocyanins are a type of anthocyanins with a p-coumaric acid unit linked with a sugar to an anthocyanidin aglycone. 3-(6-p-Coumaroyl)glucosides are found in grape and wine. Cyanidin-3-O-(di-p-coumarylglucoside)-5-glucoside is found in dark opal basil. Red leaves of Perilla frutescens also accumulate cyanidin 3-(6-O-p-coumaroyl-β- D-glucoside)-5-(6-O-malonyl-β-D-glucoside).

Cyanidin-3-O-glucoside 2-O-glucuronosyltransferase is an enzyme with systematic name UDP-D-glucuronate:cyanidin-3-O-beta-D-glucoside 2-O-beta-D-glucuronosyltransferase. This enzyme catalyses the following chemical reaction

References

  1. He, Jingren; Santos-Buelga, Celestino; Mateus, Nuno; De Freitas, Victor (2006). "Isolation and quantification of oligomeric pyranoanthocyanin-flavanol pigments from red wines by combination of column chromatographic techniques". Journal of Chromatography A. 1134 (1–2): 215–25. doi:10.1016/j.chroma.2006.09.011. PMID   16997314.
  2. Atanasova, Vessela; Fulcrand, Hélène; Cheynier, Véronique; Moutounet, Michel (2002). "Effect of oxygenation on polyphenol changes occurring in the course of wine-making". Analytica Chimica Acta. 458: 15. doi:10.1016/S0003-2670(01)01617-8.
  3. Brouillard, R; Chassaing, S; Fougerousse, A (2003). "Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long?". Phytochemistry. 64 (7): 1179–86. doi:10.1016/S0031-9422(03)00518-1. PMID   14599515.
  4. De Freitas, V; Mateus, N (2011). "Formation of pyranoanthocyanins in red wines: A new and diverse class of anthocyanin derivatives". Analytical and Bioanalytical Chemistry. 401 (5): 1463–73. doi:10.1007/s00216-010-4479-9. PMID   21181135.
  5. Wirth, J.; Morel-Salmi, C.; Souquet, J.M.; Dieval, J.B.; Aagaard, O.; Vidal, S.; Fulcrand, H.; Cheynier, V. (2010). "The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines". Food Chemistry. 123: 107. doi:10.1016/j.foodchem.2010.04.008.
  6. 1 2 Nixdorf, Suzana Lucy; Hermosín-Gutiérrez, Isidro (2010). "Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity". Analytica Chimica Acta. 659 (1–2): 208–15. doi:10.1016/j.aca.2009.11.058. PMID   20103126.
  7. Mateus, N; Oliveira, J; Haettich-Motta, M; De Freitas, V (2004). "New Family of Bluish Pyranoanthocyanins". Journal of biomedicine & biotechnology. 2004 (5): 299–305. doi:10.1155/S1110724304404033. PMC   1082895 Lock-green.svg. PMID   15577193.
  8. Oxovitisins: A New Class of Neutral Pyranone-anthocyanin Derivatives in Red Wines. Jingren He, Joana Oliveira, Artur M. S. Silva, Nuno Mateus and Victor De Freitas, J. Agric. Food Chem., 2010, 58 (15), pages 8814–8819, doi : 10.1021/jf101408q
  9. Oxidative formation and structural characterisation of new α-pyranone (lactone) compounds of non-oxonium nature originated from fruit anthocyanins. Jingren He, Artur M.S. Silva, Nuno Mateus and Victor de Freitas, Food Chemistry, Volume 127, Issue 3, 1 August 2011, pages 984–992, doi : 10.1016/j.foodchem.2011.01.069
  10. Anthocyanins and Their Variation in Red Wines II. Anthocyanin Derived Pigments and Their Color Evolution. Fei He, Na-Na Liang, Lin Mu, Qiu-Hong Pan, Jun Wang, Malcolm J. Reeves and Chang-Qing Duan, Molecules, 2012, 17, pages 1483-1519, doi : 10.3390/molecules17021483

See also