Petunidin

Last updated
Petunidin
Petunidin.svg
Names
IUPAC name
3,3′,4′,5,7-Pentahydroxy-5′-methoxyflavylium
Systematic IUPAC name
2-(3,4-Dihydroxy-5-methoxyphenyl)-3,5,7-trihydroxy-1λ4-benzopyran-1-ylium
Other names
Petunidine; Petunidin chloride;
Petunidol; Myrtillidin
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.014.409 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C16H12O7/c1-22-14-3-7(2-11(19)15(14)21)16-12(20)6-9-10(18)4-8(17)5-13(9)23-16/h2-6H,1H3,(H4-,17,18,19,20,21)/p+1 Yes check.svgY
    Key: AFOLOMGWVXKIQL-UHFFFAOYSA-O Yes check.svgY
  • InChI=1/C16H12O7/c1-22-14-3-7(2-11(19)15(14)21)16-12(20)6-9-10(18)4-8(17)5-13(9)23-16/h2-6H,1H3,(H4-,17,18,19,20,21)/p+1
    Key: AFOLOMGWVXKIQL-IKLDFBCSAS
  • Oc1cc2c(O)cc(O)cc2[o+]c1c3cc(O)c(O)c(OC)c3
Properties
C16H13O7+ (Cl)
Molar mass 317.27 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Petunidin (Pt), like Europinidin and Malvidin, is derived from Delphinidin and is an O-methylated anthocyanidin of the 3-hydroxy type. It is a natural organic compound, a dark-red or purple water-soluble pigment found in many red berries including chokeberries ( Aronia sp), Saskatoon berries ( Amelanchier alnifolia ) or different species of grape (for instance Vitis vinifera, or muscadine, Vitis rotundifolia), and also part of the pigments responsible for the petal colors in many flowers. This pigment gives the Indigo Rose tomatoes the majority of their deep purple color when the fruits are exposed to sunlight. [1] The name of the molecule itself is derived from the word Petunia.

Contents

Biosynthesis

Petunidin could form in the exocarp of fruits from delphinidin, with an anthocyanin flavonoid O-methyltransferase (Catechol-O-methyl transferase) catalyzing the B-ring methylation and S-Adenosyl-L-methyl-3H methionine being the methyl group donor.

Glycosides

Glycoside forms of petunidin are present in grape. [2] These include :

The bark of Commiphora angolensis contains petunidin-3-rhamnoglucoside. [3]

Uses

Petunidin is referred as E165f, E163 and following numbers corresponding to anthocyanins in the food coloring E number list.

See also

Related Research Articles

<span class="mw-page-title-main">Anthocyanidin</span> Class of natural compounds

Anthocyanidins are common plant pigments, the aglycones of anthocyanins. They are based on the flavylium cation, an oxonium ion, with various groups substituted for its hydrogen atoms. They generally change color from red through purple, blue, and bluish green as a function of pH.

<i>Vitis vinifera</i> Species of flowering plant in the grape vine family Vitaceae

Vitis vinifera, the common grape vine, is a species of flowering plant, native to the Mediterranean region, Central Europe, and southwestern Asia, from Morocco and Portugal north to southern Germany and east to northern Iran. There are currently between 5,000 and 10,000 varieties of Vitis vinifera grapes though only a few are of commercial significance for wine and table grape production.

<span class="mw-page-title-main">Delphinidin</span> Chemical compound

Delphinidin is an anthocyanidin, a primary plant pigment, and also an antioxidant. Delphinidin gives blue hues to flowers in the genera Viola and Delphinium. It also gives the blue-red color of the grape variety Cabernet Sauvignon, and can be found in cranberries and Concord grapes as well as pomegranates, and bilberries.

<span class="mw-page-title-main">Cyanidin</span> Anthocyanidin pigment in flowering plant petals and fruits

Cyanidin is a natural organic compound. It is a particular type of anthocyanidin. It is a pigment found in many red berries including grapes, bilberry, blackberry, blueberry, cherry, chokeberry, cranberry, elderberry, hawthorn, loganberry, açai berry and raspberry. It can also be found in other fruits such as apples and plums, and in red cabbage and red onion. It has a characteristic reddish-purple color, though this can change with pH; solutions of the compound are red at pH < 3, violet at pH 7-8, and blue at pH > 11. In certain fruits, the highest concentrations of cyanidin are found in the seeds and skin. Cyanidin has been found to be a potent sirtuin 6 (SIRT6) activator.

<span class="mw-page-title-main">Malvidin</span> Chemical compound

Malvidin is an O-methylated anthocyanidin, the 3',5'-methoxy derivative of delphinidin. As a primary plant pigment, its glycosides are highly abundant in nature.

<span class="mw-page-title-main">Peonidin</span> Chemical compound

Peonidin is an O-methylated anthocyanidin derived from Cyanidin, and a primary plant pigment. Peonidin gives purplish-red hues to flowers such as the peony, from which it takes its name, and roses. It is also present in some blue flowers, such as the morning glory.

<span class="mw-page-title-main">Pelargonidin</span> Red anthocyanidin pigment found in certain flowers and fruits

Pelargonidin is an anthocyanidin, a type of plant pigment producing a characteristic orange color used in food and industrial dyes.

<span class="mw-page-title-main">Anthocyanin</span> Class of chemical compounds

Anthocyanins, also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical compound that gives flowers a blue color for the first time in his treatise "Die Farben der Blüthen". Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<span class="mw-page-title-main">Wine color</span> Wine characteristic

The color of wine is one of the most easily recognizable characteristics of wines. Color is also an element in wine tasting since heavy wines generally have a deeper color. The accessory traditionally used to judge the wine color was the tastevin, a shallow cup allowing one to see the color of the liquid in the dim light of a cellar. The color is an element in the classification of wines.

<span class="mw-page-title-main">Oenin</span> Chemical compound

Oenin is an anthocyanin. It is the 3-glucoside of malvidin. It is one of the red pigments found in the skin of purple grapes and in wine.

<span class="mw-page-title-main">Myrtillin</span> Chemical compound

Myrtillin is an anthocyanin. It is the 3-glucoside of delphinidin. It can be found in all green plants, most abundantly in black beans, blackcurrant, blueberry, huckleberry, bilberry leaves and in various myrtles, roselle plants, and Centella asiatica plant. It is also present in yeast and oatmeal. The sumac fruit's pericarp owes its dark red colour to anthocyanin pigments, of which chrysanthemin, myrtillin and delphinidin have yet been identified.

The pyranoanthocyanins are a type of pyranoflavonoids. They are chemical compounds formed in red wines by yeast during fermentation processes or during controlled oxygenation processes during the aging of wine. The different classes of pyranoanthocyanins are carboxypyranoanthocyanins, methylpyranoanthocyanins, pyranoanthocyanin-flavanols, pyranoanthocyanin-phenols, portisins, oxovitisins and pyranoanthocyanin dimers; their general structure includes an additional ring that may have different substituents linked directly at C-10.

Delphinidin-3-<i>O</i>-(6-<i>p</i>-coumaroyl)glucoside Chemical compound

Delphinidin 3-O-(6-p-coumaroyl)glucoside is a p-coumaroylated anthocyanin. It can be found in some red Vitis vinifera grape cultivars and in red wine.

Petunidin-3-<i>O</i>-glucoside Chemical compound

Petunidin-3-O-glucoside is anthocyanin. It is found in fruits and berries, in red Vitis vinifera grapes and red wine.

Peonidin-3-<i>O</i>-glucoside Chemical compound

Peonidin-3-O-glucoside is anthocyanin. It is found in fruits and berries, in red Vitis vinifera grapes and red wine, in red onions and in purple corn. It is dark red to purple in colour.

<i>p</i>-Coumaroylated anthocyanin

p-Coumaroylated anthocyanins are a type of anthocyanins with a p-coumaric acid unit linked with a sugar to an anthocyanidin aglycone. 3-(6-p-Coumaroyl)glucosides are found in grape and wine. Cyanidin-3-O-(di-p-coumarylglucoside)-5-glucoside is found in dark opal basil. Red leaves of Perilla frutescens also accumulate cyanidin 3-(6-O-p-coumaroyl-β-D-glucoside)-5-(6-O-malonyl-β-D-glucoside).

Commiphora angolensis, also known as sand commiphora or sand corkwood, is a shrub species in the genus Commiphora growing mainly in Angola and Namibia.

<span class="mw-page-title-main">Callistephin</span> Chemical compound

Callistephin is an anthocyanin. It is the 3-O-glucoside of pelargonidin.

References

  1. "The Purple Tomato FAQ". 2 May 2012.
  2. "Food-Info.net : Anthocyanins and anthocyanidins".
  3. Chemical study of bark from Commiphora angolensis Engl. Cardoso Do Vale, J., Bol Escola Farm Univ Coimbra Edicao Cient, 1962, volume 3, page 128 (abstract)