Chrysanthemin

Last updated
Chrysanthemin
Chrysanthemin chloride.svg
Names
IUPAC name
(2S,3R,4S,5S,6R)-2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol chloride
Other names
Chrysontenin
Glucocyanidin
Asterin
Chrysanthemin
Purple corn color
Kuromanin
Kuromanin chloride
Cyanidin 3-glucoside
Cyanidol 3-glucoside
Cyanidine 3-glucoside
Cyanidin 3-O-glucoside
cyanidin-3-O-beta-D-glucoside
Cyanidin 3-monoglucoside
C3G
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.027.622 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C21H20O11.ClH/c22-7-16-17(27)18(28)19(29)21(32-16)31-15-6-10-12(25)4-9(23)5-14(10)30-20(15)8-1-2-11(24)13(26)3-8;/h1-6,16-19,21-22,27-29H,7H2,(H3-,23,24,25,26);1H/t16-,17-,18+,19-,21-;/m1./s1 Yes check.svgY
    Key: YTMNONATNXDQJF-UBNZBFALSA-N Yes check.svgY
  • InChI=1/C21H20O11.ClH/c22-7-16-17(27)18(28)19(29)21(32-16)31-15-6-10-12(25)4-9(23)5-14(10)30-20(15)8-1-2-11(24)13(26)3-8;/h1-6,16-19,21-22,27-29H,7H2,(H3-,23,24,25,26);1H/t16-,17-,18+,19-,21-;/m1./s1
    Key: YTMNONATNXDQJF-UBNZBFALBB
  • [Cl-].O(c1c([o+]c2c(c1)c(O)cc(O)c2)c3ccc(O)c(O)c3)[C@@H]4O[C@@H]([C@@H](O)[C@H](O)[C@H]4O)CO
Properties
C21H21O11+, Cl
C21H21ClO11
Molar mass 484.83 g/mol (chloride)
449.38 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)
UV visible spectrum of cyanidin 3-O-glucoside UV visible spectrum cyanidin3G.PNG
UV visible spectrum of cyanidin 3-O-glucoside

Chrysanthemin is an anthocyanin. It is the 3-glucoside of cyanidin.

Contents

Natural occurrences

Chrysanthemin can be found in the roselle plant (Hibiscus sabdariffa, Malvaceae), different Japanese angiosperms, [1] Rhaponticum (Asteraceae), [2] The fruits of the smooth arrowwood ( Viburnum dentatum , Caprifoliaceae) appear blue. One of the major pigments is cyanidin 3-glucoside, but the total mixture is very complex. [3]

In food

Chrysanthemin has been detected in blackcurrant pomace, in European elderberry, [4] in red raspberries, in soybean seed coats, [5] in Victoria plum, [6] in peach, [7] lychee and açaí. [8] It is found in red oranges [9] and black rice. [10]

It is the major anthocyanin in purple corn (Zea mays). Purple corn is approved in Japan and listed in the "Existing Food Additive List" as purple corn color. [11]

Biosynthesis

The biosynthesis of cyanidin 3-O-glucoside in Escherichia coli was demonstrated by means of genetic engineering. [12]

In Arabidopsis thaliana , a glycosyltransferase, UGT79B1, is involved in the anthocyanin biosynthetic pathway. UGT79B1 protein converts cyanidin 3-O-glucoside to cyanidin 3-O-xylosyl(1→2)glucoside. [13]

Related Research Articles

<i>Vitis vinifera</i> Species of flowering plant in the grape vine family Vitaceae

Vitis vinifera, the common grape vine, is a species of flowering plant, native to the Mediterranean region, Central Europe, and southwestern Asia, from Morocco and Portugal north to southern Germany and east to northern Iran. There are currently between 5,000 and 10,000 varieties of Vitis vinifera grapes though only a few are of commercial significance for wine and table grape production.

<span class="mw-page-title-main">Açaí palm</span> Palm tree with many uses, mainly fruit as cash crop

The açaí palm, Euterpe oleracea, is a species of palm tree (Arecaceae) cultivated for its fruit, hearts of palm, leaves, and trunk wood. Global demand for the fruit has expanded rapidly in the 21st century, and the tree is cultivated for that purpose primarily.

<span class="mw-page-title-main">Strawberry</span> Edible fruit

The garden strawberry is a widely grown hybrid species of the genus Fragaria, collectively known as the strawberries, which are cultivated worldwide for their fruit. The fruit is widely appreciated for its characteristic aroma, bright red color, juicy texture, and sweetness. It is consumed in large quantities, either fresh or in such prepared foods as jam, juice, pies, ice cream, milkshakes, and chocolates. Artificial strawberry flavorings and aromas are also widely used in products such as candy, soap, lip gloss, perfume, and many others.

<span class="mw-page-title-main">Cyanidin</span> Anthocyanidin pigment in flowering plant petals and fruits

Cyanidin is a natural organic compound. It is a particular type of anthocyanidin. It is a pigment found in many red berries including grapes, bilberry, blackberry, blueberry, cherry, chokeberry, cranberry, elderberry, hawthorn, loganberry, açai berry and raspberry. It can also be found in other fruits such as apples and plums, and in red cabbage and red onion. It has a characteristic reddish-purple color, though this can change with pH; solutions of the compound are red at pH < 3, violet at pH 7-8, and blue at pH > 11. In certain fruits, the highest concentrations of cyanidin are found in the seeds and skin. Cyanidin has been found to be a potent sirtuin 6 (SIRT6) activator.

<span class="mw-page-title-main">Antioxidant effect of polyphenols and natural phenols</span>

A polyphenol antioxidant is a hypothetized type of antioxidant, in which each instance would contain a polyphenolic substructure; such instances which have been studied in vitro. Numbering over 4,000 distinct chemical structures, such polyphenols may have antioxidant activity {{{1}}} in vitro (although they are unlikely to be antioxidants in vivo). Hypothetically, they may affect cell-to-cell signaling, receptor sensitivity, inflammatory enzyme activity or gene regulation, although high-quality clinical research has not confirmed any of these possible effects in humans as of 2020.

<span class="mw-page-title-main">Peonidin</span> Chemical compound

Peonidin is an O-methylated anthocyanidin derived from Cyanidin, and a primary plant pigment. Peonidin gives purplish-red hues to flowers such as the peony, from which it takes its name, and roses. It is also present in some blue flowers, such as the morning glory.

In enzymology, an anthocyanidin 3-O-glucosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Anthocyanin</span> Class of chemical compounds

Anthocyanins, also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical compound that gives flowers a blue color for the first time in his treatise "Die Farben der Blüthen". Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<i>Aristotelia chilensis</i> Tree native to Chile bearing small purple-black berries

Aristotelia chilensis, known as maqui or Chilean wineberry, is a tree species in the Elaeocarpaceae family native to South America in the Valdivian temperate forests of Chile and adjacent regions of southern Argentina. Limited numbers of these trees are cultivated in gardens for their small fruits. Wild-harvested fruits are commercially marketed.

<span class="mw-page-title-main">Purple corn</span> Variety of flint maize

Purple corn or purple maize is group of flint maize varieties originating in South America, descended from a common ancestral variety termed "kʼculli" in Quechua. It is most commonly grown in the Andes of Peru, Bolivia and Ecuador.

<span class="mw-page-title-main">Oenin</span> Chemical compound

Oenin is an anthocyanin. It is the 3-glucoside of malvidin. It is one of the red pigments found in the skin of purple grapes and in wine.

<span class="mw-page-title-main">Antirrhinin</span> Chemical compound

Antirrhinin is an anthocyanin. It is the 3-rutinoside of cyanidin.

<span class="mw-page-title-main">Myrtillin</span> Chemical compound

Myrtillin is an anthocyanin. It is the 3-glucoside of delphinidin. It can be found in all green plants, most abundantly in black beans, blackcurrant, blueberry, huckleberry, bilberry leaves and in various myrtles, roselle plants, and Centella asiatica plant. It is also present in yeast and oatmeal. The sumac fruit's pericarp owes its dark red colour to anthocyanin pigments, of which chrysanthemin, myrtillin and delphinidin have yet been identified.

The pyranoanthocyanins are a type of pyranoflavonoids. They are chemical compounds formed in red wines by yeast during fermentation processes or during controlled oxygenation processes during the aging of wine. The different classes of pyranoanthocyanins are carboxypyranoanthocyanins, methylpyranoanthocyanins, pyranoanthocyanin-flavanols, pyranoanthocyanin-phenols, portisins, oxovitisins and pyranoanthocyanin dimers; their general structure includes an additional ring that may have different substituents linked directly at C-10.

<span class="mw-page-title-main">Blue corn</span> Variety of maize

Blue corn is a group of several closely related varieties of flint corn grown in Mexico, the Southwestern United States, and the Southeastern United States. It is one of the main types of corn used for the traditional Southern and Central Mexican food known as tlacoyo.

Peonidin-3-<i>O</i>-glucoside Chemical compound

Peonidin-3-O-glucoside is anthocyanin. It is found in fruits and berries, in red Vitis vinifera grapes and red wine, in red onions and in purple corn. It is dark red to purple in colour.

<span class="mw-page-title-main">Callistephin</span> Chemical compound

Callistephin is an anthocyanin. It is the 3-O-glucoside of pelargonidin.

Cyanidin-3,5-<i>O</i>-diglucoside Chemical compound

Cyanidin-3,5-O-diglucoside, also known as cyanin, is an anthocyanin. It is the 3,5-O-diglucoside of cyanidin.

Purple sweet potato color (PSPC) is a natural anthocyanin food coloring obtained from the sweet potato. Some cultivars, like the Ayamurasaki, released in Japan in 1995, are specially developed to have a higher anthocyanin content.

References

  1. Yoshitama, Kunijiro (1972). "A survey of anthocyanins in sprouting leaves of some Japanese angiosperms studies on anthocyanins, LXV". The Botanical Magazine Tokyo. 85 (4): 303–306. doi:10.1007/BF02490176. S2CID   46453668.
  2. Vereskovskii, VV (1978). "Chrysanthemin and cyanin in species of the genusRhaponticum". Chemistry of Natural Compounds. 14 (4): 450–451. doi:10.1007/BF00565267. S2CID   4817423.
  3. Francis, FJ (1989). "Food colorants: Anthocyanins". Critical Reviews in Food Science and Nutrition. 28 (4): 273–314. doi:10.1080/10408398909527503. PMID   2690857.
  4. Foods in which the polyphenol Cyanidin 3-O-glucoside is found, http://www.phenol-explorer.eu/contents/polyphenol/9
  5. Choung, Myoung-Gun; Baek, In-Youl; Kang, Sung-Taeg; Han, Won-Young; Doo-Chull, Shin; Moon, Huhn-Pal; Kang, Kwang-Hee (2001). "Isolation and Determination of Anthocyanins in Seed Coats of Black Soybean (Glycine max (L.) Merr.)". Journal of Agricultural and Food Chemistry. 49 (12): 5848–5851. doi:10.1021/jf010550w. PMID   11743773.
  6. Dickinson, D (1956). "The chemical constituents of victoria plums: Chrysanthemin, acid and pectin contents". Journal of the Science of Food and Agriculture. 7 (11): 699–705. doi:10.1002/jsfa.2740071103.
  7. Postharvest sensory and phenolic characterization of 'Elegant Lady and 'Carson' peaches. Rodrigo Infante, Loreto Contador, Pía Rubio, Danilo Aros and Álvaro Peña-Neira, Chilean Journal of Agricultural Research, 71(3), July–September 2011, pages 445–451 (article)
  8. Del Pozo-Insfran D, Brenes CH, Talcott ST (March 2004). "Phytochemical composition and pigment stability of Açai (Euterpe oleracea Mart.)". J. Agric. Food Chem. 52 (6): 1539–45. doi:10.1021/jf035189n. PMID   15030208.
  9. Felgines, C; Texier, O; Besson, C; Vitaglione, P; Lamaison, JL; Fogliano, V; Scalbert, A; Vanella, L; Galvano, F (2008). "Influence of glucose on cyanidin 3-glucoside absorption in rats". Mol Nutr Food Res. 52 (8): 959–64. doi:10.1002/mnfr.200700377. PMID   18646002.
  10. Um, Min Young; Ahn, Jiyun; Ha, Tae Youl (2013-09-01). "Hypolipidaemic effects of cyanidin 3-glucoside rich extract from black rice through regulating hepatic lipogenic enzyme activities". Journal of the Science of Food and Agriculture. 93 (12): 3126–3128. doi: 10.1002/jsfa.6070 . ISSN   1097-0010. PMID   23471845.
  11. Anthocyanins isolated from purple corn (Zea mays L.). Hiromitsu Aoki, Noriko Kuze and Yoshiaki Kato (article Archived 2013-10-29 at the Wayback Machine )
  12. Yan Y, Chemler J, Huang L, Martens S, Koffas MA (2005). "Metabolic engineering of anthocyanin biosynthesis in Escherichia coli". Appl. Environ. Microbiol. 71 (7): 3617–23. Bibcode:2005ApEnM..71.3617Y. doi:10.1128/AEM.71.7.3617-3623.2005. PMC   1169036 . PMID   16000769.
  13. Yonekura-Sakakibara, Keiko; Fukushima, Atsushi; Nakabayashi, Ryo; Hanada, Kousuke; Matsuda, Fumio; Sugawara, Satoko; Inoue, Eri; Kuromori, Takashi; Ito, Takuya; Shinozaki, Kazuo; Wangwattana, Bunyapa; Yamazaki, Mami (2012). "Two glycosyltransferases involved in anthocyanin modi?cation delineated by transcriptome independent component analysis in Arabidopsis thaliana". The Plant Journal. 69 (1): 154–167. doi:10.1111/j.1365-313X.2011.04779.x. PMC   3507004 . PMID   21899608.