Regulatory-associated protein of mTOR also known as raptor or KIAA1303 is an adapter protein that is encoded in humans by the RPTOR gene. [5] [6] [7] Two mRNAs from the gene have been identified that encode proteins of 1335 (isoform 1) and 1177 (isoform 2) amino acids long.
The human gene is located on human chromosome 17 with location of the cytogenic band at 17q25.3. [7]
RPTOR is highly expressed in skeletal muscle and is somewhat less present in brain, lung, small intestine, kidney, and placenta tissue. Isoform 3 is widely expressed and most highly expressed in the nasal mucosa and pituitary. The lowest levels occur in the spleen. [8] In the cell, RPTOR is present in cytoplasm, lysosomes, and cytoplasmic granules. Amino acid availability determines RPTOR targeting to lysosomes. In stressed cells, RPTOR associates with SPAG5 and accumulates in stress granules, which significantly reduces its presence in lysosomes. [9] [10]
RPTOR encodes part of a signaling pathway regulating cell growth which responds to nutrient and insulin levels. RPTOR is an evolutionarily conserved protein with multiple roles in the mTOR pathway. The adapter protein and mTOR kinase form a stoichiometric complex. The encoded protein also associates with eukaryotic initiation factor 4E-binding protein-1 and ribosomal protein S6 kinase. It upregulates S6 kinase, the downstream effector ribosomal protein, and it downregulates the mTOR kinase. RPTOR also has a positive role in maintaining cell size and mTOR protein expression. The association of mTOR and RPTOR is stabilized by nutrient deprivation and other conditions which suppress the mTOR pathway. [8] Multiple transcript variants exist for this gene which encode different isoforms. [7]
RPTOR is a 150 kDa mTOR binding protein that is part of the mammalian target of rapamycin complex 1 (mTORC1). This complex contains mTOR, MLST8, RPTOR, AKT1S1/PRAS40, and DEPTOR. mTORC1 both binds to and is inhibited by FKBP12-rapamycin. mTORC1 activity is upregulated by mTOR and MPAK8 by insulin-stimulated phosphorylation at Ser-863. [11] [12] MAPK8 also causes phosphorylation at Ser-696, Thr-706, and Ser-863 as a result of osmotic stress. [13] AMPK causes phosphorylation in the event of nutrient starvation and promotes 14-3-3 binding to raptor, which downregulates the mTORC1 complex. [14] RPS6KA1 stimulates mTORC1 activity by phosphorylating at Ser-719, Ser-721, and Ser-722 as a response to growth factors.
RPTOR has also been shown to interact with:
The clinical significance of RPTOR is primarily due to its involvement in the mTOR pathway, which plays roles in mRNA translation, autophagy, and cell growth. Mutations in the PTEN tumor suppressor gene are the best known genetic deficiencies in cancer which affect mTOR signaling. These mutations are frequently found in a very large variety of cancers, including prostate, breast, lung, bladder, melanoma, endometrial, thyroid, brain, and renal carcinomas. PTEN inhibits the lipid-kinase activity of class I PtdIns3Ks, which phosphorylate PtdIns(4,5)P2 to create PtdIns(3,4,5)P3 (PIP3). PIP3 is a membrane-docking site for AKT and PDK1. In turn, active PDK1, along with mTORC1, phosphorylates S6K in the part of the mTOR pathway which promotes protein synthesis and cell growth. [39]
The mTOR pathway has also been found to be involved in aging. Studies with C. elegans, fruitflies, and mice have shown that the lifespan of the organism is significantly increased by inhibiting mTORC1. [40] [41] mTORC1 phosphorylates Atg13 and stops it from forming the ULK1 kinase complex. This inhibits autophagy, the major degradation pathway in eukaryotic cells. [42] Because mTORC1 inhibits autophagy and stimulates cell growth, it can cause damaged proteins and cell structures to accumulate. For this reason, dysfunction in the process of autophagy can contribute to several diseases, including cancer. [43]
The mTOR pathway is important in many cancers. In cancer cells, astrin is required to suppress apoptosis during stress. Astrin recruits RPTOR to stress granules, inhibiting mTORC1 association and preventing apoptosis induced by mTORC1 hyperactivation. Because astrin is frequently upregulated in tumors, it is a potential target to sensitize tumors to apoptosis through the mTORC1 pathway. [10]
RPTOR is overexpressed in pituitary adenoma, and its expression increases with tumor staging. RPTOR could be valuable in the prediction and prognosis of pituitary adenoma due to this correlation between protein expression and the growth and invasion of the tumor. [44]
mTOR is found in two different complexes. When it associates with rapamycin-insensitive companion of mTOR (rictor), the complex is known as mTORC2 and it is insensitive to rapamycin. However, the complex mTORC1 formed by association with accessory protein RPTOR is sensitive to rapamycin. Rapamycin is a macrolide which is an immunosuppressant in humans that inhibits mTOR by binding to its intracellular receptor FKBP12. In many cancers, hyperactive AKT signaling leads to increased mTOR signaling, so rapamycin has been considered as an anti-cancer therapeutic for cancers with PTEN inactivation. Numerous clinical trials involving rapamycin analogs, such as CCI-779, RAD001, and AP23573, are ongoing. Early reports have been promising for renal-cell carcinoma, breast carcinomas, and non-small-cell lung carcinomas. [39]
Protein kinase B (PKB), also known as Akt, is the collective name of a set of three serine/threonine-specific protein kinases that play key roles in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration.
The mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin, and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases.
RAC(Rho family)-alpha serine/threonine-protein kinase is an enzyme that in humans is encoded by the AKT1 gene. This enzyme belongs to the AKT subfamily of serine/threonine kinases that contain SH2 protein domains. It is commonly referred to as PKB, or by both names as "Akt/PKB".
Tuberous sclerosis complex 2 (TSC2), also known as tuberin, is a protein that in humans is encoded by the TSC2 gene.
Eukaryotic translation initiation factor 4E-binding protein 1 is a protein that in humans is encoded by the EIF4EBP1 gene. inhibits cap-dependent translation by binding to translation initiation factor eIF4E. Phosphorylation of 4E-BP1 results in its release from eIF4E, thereby allows cap-dependent translation to continue thereby increasing the rate of protein synthesis.
MAP kinase-activated protein kinase 2 is an enzyme that in humans is encoded by the MAPKAPK2 gene.
RHEB also known as Ras homolog enriched in brain (RHEB) is a GTP-binding protein that is ubiquitously expressed in humans and other mammals. The protein is largely involved in the mTOR pathway and the regulation of the cell cycle.
Ribosomal protein S6 kinase beta-1 (S6K1), also known as p70S6 kinase, is an enzyme that in humans is encoded by the RPS6KB1 gene. It is a serine/threonine kinase that acts downstream of PIP3 and phosphoinositide-dependent kinase-1 in the PI3 kinase pathway. As the name suggests, its target substrate is the S6 ribosomal protein. Phosphorylation of S6 induces protein synthesis at the ribosome.
Lipin-1 is a protein that in humans is encoded by the LPIN1 gene.
Target of rapamycin complex 2 subunit MAPKAP1 is a protein that in humans is encoded by the MAPKAP1 gene. As the name indicates, it is a subunit of mTOR complex 2.
Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) is a protein that in humans is encoded by the RICTOR gene.
Tuberous sclerosis proteins 1 and 2, also known as TSC1 (hamartin) and TSC2 (tuberin), form a protein-complex. The encoding two genes are TSC1 and TSC2. The complex is known as a tumor suppressor. Mutations in these genes can cause tuberous sclerosis complex. Depending on the grade of the disease, intellectual disability, epilepsy and tumors of the skin, retina, heart, kidney and the central nervous system can be symptoms.
AuTophaGy related 1 (Atg1) is a 101.7kDa serine/threonine kinase in S.cerevisiae, encoded by the gene ATG1. It is essential for the initial building of the autophagosome and Cvt vesicles. In a non-kinase role it is - through complex formation with Atg13 and Atg17 - directly controlled by the TOR kinase, a sensor for nutrient availability.
Target of rapamycin complex subunit LST8, also known as mammalian lethal with SEC13 protein 8 (mLST8) or TORC subunit LST8 or G protein beta subunit-like, is a protein that in humans is encoded by the MLST8 gene. It is a subunit of both mTORC1 and mTORC2, complexes that regulate cell growth and survival in response to nutrient, energy, redox, and hormonal signals. It is upregulated in several human colon and prostate cancer cell lines and tissues. Knockdown of mLST8 prevented mTORC formation and inhibited tumor growth and invasiveness.
mTOR inhibitors are a class of drugs used to treat several human diseases, including cancer, autoimmune diseases, and neurodegeneration. They function by inhibiting the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.
mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.
mTOR Complex 2 (mTORC2) is an acutely rapamycin-insensitive protein complex formed by serine/threonine kinase mTOR that regulates cell proliferation and survival, cell migration and cytoskeletal remodeling. The complex itself is rather large, consisting of seven protein subunits. The catalytic mTOR subunit, DEP domain containing mTOR-interacting protein (DEPTOR), mammalian lethal with sec-13 protein 8, and TTI1/TEL2 complex are shared by both mTORC2 and mTORC1. Rapamycin-insensitive companion of mTOR (RICTOR), mammalian stress-activated protein kinase interacting protein 1 (mSIN1), and protein observed with rictor 1 and 2 (Protor1/2) can only be found in mTORC2. Rictor has been shown to be the scaffold protein for substrate binding to mTORC2.
David M. Sabatini is an American scientist and a former professor of biology at the Massachusetts Institute of Technology. From 2002 to 2021, he was a member of the Whitehead Institute for Biomedical Research. He was also an investigator of the Howard Hughes Medical Institute from 2008 to 2021 and was elected to the National Academy of Sciences in 2016. He is known for his contributions in the areas of cell signaling and cancer metabolism, most notably the co-discovery of mTOR.
Michael Nip Hall is an American-Swiss molecular biologist and professor at the Biozentrum of the University of Basel, Switzerland. He discovered TOR, a protein central for regulating cell growth.
The Ragulator-Rag complex is a regulator of lysosomal signalling and trafficking in eukaryotic cells, which plays an important role in regulating cell metabolism and growth in response to nutrient availability in the cell. The Ragulator-Rag Complex is composed of five LAMTOR subunits, which work to regulate MAPK and mTOR complex 1. The LAMTOR subunits form a complex with Rag GTPase and v-ATPase, which sits on the cell’s lysosomes and detects the availability of amino acids. If the Ragulator complex receives signals for low amino acid count, it will start the process of catabolizing the cell. If there is an abundance of amino acids available to the cell, the Ragulator complex will signal that the cell can continue to grow. Ragulator proteins come in two different forms: Rag A/Rag B and Rag C/Rag D. These interact to form heterodimers with one another.