TSC1

Last updated
TSC1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TSC1 , LAM, TSC, tuberous sclerosis 1, TSC complex subunit 1
External IDs OMIM: 605284; MGI: 1929183; HomoloGene: 314; GeneCards: TSC1; OMA:TSC1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000368
NM_001008567
NM_001162426
NM_001162427
NM_001362177

Contents

NM_022887
NM_001289575
NM_001289576

RefSeq (protein)

NP_000359
NP_001155898
NP_001155899
NP_001349106

NP_001276504
NP_001276505
NP_075025

Location (UCSC) Chr 9: 132.89 – 132.95 Mb Chr 2: 28.53 – 28.58 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Tuberous sclerosis 1 (TSC1), also known as hamartin, is a protein that in humans is encoded by the TSC1 gene. [5]

Function

TSC1 functions as a co-chaperone which inhibits the ATPase activity of the chaperone Hsp90 (heat shock protein-90) and decelerates its chaperone cycle. TSC1 functions as a facilitator of Hsp90 in chaperoning the kinase and non-kinase clients including TSC2, therefore preventing their ubiquitination and degradation in the proteasome. [6] TSC1, TSC2 and TBC1D7 is a multi-protein complex also known as the TSC complex. This complex negatively regulates mTORC1 signaling by functioning as a GTPase-activating protein (GAP) for the small GTPase Rheb, an essential activator of mTORC1. The TSC complex has been implicated as a tumor suppressor.

Clinical significance

Defects in this gene can cause tuberous sclerosis, due to a functional impairment of the TSC complex.[ citation needed ] Defects in TSC1 may also be a cause of focal cortical dysplasia.[ citation needed ] TSC1 may be involved in protecting brain neurons in the CA3 region of the hippocampus from the effects of stroke. [7]

Interactions

TSC1 has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">Tuberous sclerosis</span> Genetic condition causing non-cancerous tumours

Tuberous sclerosis complex (TSC) is a rare multisystem autosomal dominant genetic disease that causes non-cancerous tumours to grow in the brain and on other vital organs such as the kidneys, heart, liver, eyes, lungs and skin. A combination of symptoms may include seizures, intellectual disability, developmental delay, behavioral problems, skin abnormalities, lung disease, and kidney disease.

<span class="mw-page-title-main">Benign tumor</span> Mass of cells which cannot spread throughout the body

A benign tumor is a mass of cells (tumor) that does not invade neighboring tissue or metastasize. Compared to malignant (cancerous) tumors, benign tumors generally have a slower growth rate. Benign tumors have relatively well differentiated cells. They are often surrounded by an outer surface or stay contained within the epithelium. Common examples of benign tumors include moles and uterine fibroids.

<span class="mw-page-title-main">Lymphangioleiomyomatosis</span> Medical condition

Lymphangioleiomyomatosis (LAM) is a rare, progressive and systemic disease that typically results in cystic lung destruction. It predominantly affects women, especially during childbearing years. The term sporadic LAM is used for patients with LAM not associated with tuberous sclerosis complex (TSC), while TSC-LAM refers to LAM that is associated with TSC.

Phakomatoses, also known as neurocutaneous syndromes, are a group of multisystemic diseases that most prominently affect structures primarily derived from the ectoderm such as the central nervous system, skin and eyes. The majority of phakomatoses are single-gene disorders that may be inherited in an autosomal dominant, autosomal recessive or X-linked pattern. Presentations may vary dramatically between patients with the same particular syndrome due to mosaicism, variable expressivity, and penetrance.

<span class="mw-page-title-main">UBE3A</span> Protein-coding gene in Homo sapiens

Ubiquitin-protein ligase E3A (UBE3A) also known as E6AP ubiquitin-protein ligase (E6AP) is an enzyme that in humans is encoded by the UBE3A gene. This enzyme is involved in targeting proteins for degradation within cells.

Tuberous sclerosis complex (TSC) tumor suppressors form the TSC1-TSC2 molecular complex. Under poor growth conditions the TSC1-TSC2 complex limits cell growth. A key promoter of cell growth, mTORC1, is inhibited by the tuberous sclerosis complex. Insulin activates mTORC1 and causes dissociation of TSC from the surface of lysosomes.

<span class="mw-page-title-main">Angiomyolipoma</span> Medical condition

Angiomyolipomas are the most common benign tumour of the kidney. Although regarded as benign, angiomyolipomas may grow such that kidney function is impaired or the blood vessels may dilate and burst, leading to bleeding.

<span class="mw-page-title-main">Timeline of tuberous sclerosis</span>

The history of tuberous sclerosis (TSC) research spans less than 200 years. TSC is a rare, multi-system genetic disease that can cause benign tumours to grow on the brain or other vital organs such as the kidneys, heart, eyes, lungs, and skin. A combination of symptoms may include seizures, developmental delay, behavioural problems and skin abnormalities, as well as lung and kidney disease. TSC is caused by mutations on either of two genes, TSC1 and TSC2, which encode for the proteins hamartin and tuberin respectively. These proteins act as tumour growth suppressors and regulate cell proliferation and differentiation. Originally regarded as a rare pathological curiosity, it is now an important focus of research into tumour formation and suppression.

<span class="mw-page-title-main">Folliculin</span> Protein-coding gene

The tumor suppressor gene FLCN encodes the protein folliculin, also known as Birt–Hogg–Dubé syndrome protein, which functions as an inhibitor of Lactate Dehydrogenase-A and a regulator of the Warburg effect. Folliculin (FLCN) is also associated with Birt–Hogg–Dubé syndrome, which is an autosomal dominant inherited cancer syndrome in which affected individuals are at risk for the development of benign cutaneous tumors (folliculomas), pulmonary cysts, and kidney tumors.

<span class="mw-page-title-main">PLK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PLK1, also known as polo-like kinase 1 (PLK-1) or serine/threonine-protein kinase 13 (STPK13), is an enzyme that in humans is encoded by the PLK1 gene.

<span class="mw-page-title-main">TSC2</span> Mammalian protein found in Homo sapiens

Tuberous sclerosis complex 2 (TSC2), also known as tuberin, is a protein that in humans is encoded by the TSC2 gene.

<span class="mw-page-title-main">RAP1A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-1A is a protein that in humans is encoded by the RAP1A gene.

<span class="mw-page-title-main">RHEB</span> Protein-coding gene in the species Homo sapiens

RHEB also known as Ras homolog enriched in brain (RHEB) is a GTP-binding protein that is ubiquitously expressed in humans and other mammals. The protein is largely involved in the mTOR pathway and the regulation of the cell cycle.

<span class="mw-page-title-main">RB1CC1</span> Protein-coding gene in the species Homo sapiens

RB1-inducible coiled-coil protein 1 is a protein that in humans is encoded by the RB1CC1 gene.

<span class="mw-page-title-main">Dedicator of cytokinesis protein 7</span> Protein found in humans

Dedicator of cytokinesis protein (Dock7) is a large protein encoded in the human by the DOCK7 gene, involved in intracellular signalling networks. It is a member of the DOCK-C subfamily of the DOCK family of guanine nucleotide exchange factors (GEFs) which function as activators of small G-proteins. Dock7 activates isoforms of the small G protein Rac.

<span class="mw-page-title-main">Koenen's tumor</span> Medical condition

Koenen's tumor (KT), also commonly termed periungual angiofibroma, is a subtype of the angiofibromas. Angiofibromas are benign papule, nodule, and/or tumor lesions that are separated into various subtypes based primarily on the characteristic locations of their lesions. KTs are angiofibromas that develop in and under the toenails and/or fingernails. KTs were once considered as the same as another subtype of the angiofibromas viz., acral angiofibromas. While the literature may still sometimes regard KTs as acral angiofibromas, acral angiofibromas are characteristically located in areas close to but not in the toenails and fingernails as well as in the soles of the feet and palms of the hands. KTs are here regarded as distinct from acral angiofibromas.

Tuberous sclerosis proteins 1 and 2, also known as TSC1 (hamartin) and TSC2 (tuberin), form a protein-complex. The encoding two genes are TSC1 and TSC2. The complex is known as a tumor suppressor. Mutations in these genes can cause tuberous sclerosis complex. Depending on the grade of the disease, intellectual disability, epilepsy and tumors of the skin, retina, heart, kidney and the central nervous system can be symptoms.

mTORC1 Protein complex

mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.

<span class="mw-page-title-main">Alcino J. Silva</span> American neuroscientist (born 1961)

Alcino J. Silva is a Portuguese-American neuroscientist who was the recipient of the 2008 Order of Prince Henry and elected as a fellow of the American Association for the Advancement of Science in 2013 for his contributions to the molecular cellular cognition of memory, a field he pioneered with the publication of two articles in Science in 1992.

Duojia Pan is a Chinese-American developmental biologist at the University of Texas Southwestern Medical Center, where he is Fouad A. and Val Imm Bashour Distinguished Professor of Physiology, chairman of the department of physiology, and investigator of the Howard Hughes Medical Institute (HHMI). His research is focused on molecular mechanisms of growth control and tissue homeostasis and their implications in human disease.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000165699 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026812 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: TSC1 tuberous sclerosis 1".
  6. 1 2 3 Woodford MR, Sager RA, Marris E, Dunn DM, Blanden AR, Murphy RL, Rensing N, Shapiro O, Panaretou B, Prodromou C, Loh SN, Gutmann DH, Bourboulia D, Bratslavsky G, Wong M, Mollapour M (December 2017). "Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients". The EMBO Journal. 36 (24): 3650–3665. doi:10.15252/embj.201796700. PMC   5730846 . PMID   29127155.
  7. Papadakis M, Hadley G, Xilouri M, Hoyte LC, Nagel S, McMenamin MM, Tsaknakis G, Watt SM, Drakesmith CW, Chen R, Wood MJ, Zhao Z, Kessler B, Vekrellis K, Buchan AM (March 2013). "Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy". Nature Medicine. 19 (3): 351–7. doi:10.1038/nm.3097. PMC   3744134 . PMID   23435171.
  8. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (September 2004). "Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase". Proceedings of the National Academy of Sciences of the United States of America. 101 (37): 13489–94. Bibcode:2004PNAS..10113489R. doi: 10.1073/pnas.0405659101 . PMC   518784 . PMID   15342917.
  9. Haddad LA, Smith N, Bowser M, Niida Y, Murthy V, Gonzalez-Agosti C, Ramesh V (November 2002). "The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton". The Journal of Biological Chemistry. 277 (46): 44180–6. doi: 10.1074/jbc.M207211200 . PMID   12226091.
  10. 1 2 Astrinidis A, Senapedis W, Henske EP (January 2006). "Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner". Human Molecular Genetics. 15 (2): 287–97. doi: 10.1093/hmg/ddi444 . PMID   16339216.
  11. Hodges AK, Li S, Maynard J, Parry L, Braverman R, Cheadle JP, DeClue JE, Sampson JR (December 2001). "Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin". Human Molecular Genetics. 10 (25): 2899–905. doi: 10.1093/hmg/10.25.2899 . PMID   11741833.
  12. Aicher LD, Campbell JS, Yeung RS (June 2001). "Tuberin phosphorylation regulates its interaction with hamartin. Two proteins involved in tuberous sclerosis". The Journal of Biological Chemistry. 276 (24): 21017–21. doi: 10.1074/jbc.C100136200 . PMID   11290735.
  13. van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, Reuser A, Sampson J, Halley D, van der Sluijs P (June 1998). "Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products". Human Molecular Genetics. 7 (6): 1053–7. doi: 10.1093/hmg/7.6.1053 . hdl: 1765/8818 . PMID   9580671.
  14. Nellist M, Goedbloed MA, de Winter C, Verhaaf B, Jankie A, Reuser AJ, van den Ouweland AM, van der Sluijs P, Halley DJ (October 2002). "Identification and characterization of the interaction between tuberin and 14-3-3zeta". The Journal of Biological Chemistry. 277 (42): 39417–24. doi: 10.1074/jbc.M204802200 . PMID   12176984.
  15. Li Y, Inoki K, Guan KL (September 2004). "Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity". Molecular and Cellular Biology. 24 (18): 7965–75. doi:10.1128/MCB.24.18.7965-7975.2004. PMC   515062 . PMID   15340059.
  16. Mak BC, Takemaru K, Kenerson HL, Moon RT, Yeung RS (February 2003). "The tuberin-hamartin complex negatively regulates beta-catenin signaling activity". The Journal of Biological Chemistry. 278 (8): 5947–51. doi: 10.1074/jbc.C200473200 . PMID   12511557.
  17. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (April 2005). "Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis". Cell. 121 (2): 179–93. doi: 10.1016/j.cell.2005.02.031 . PMID   15851026. S2CID   18663447.
  18. Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, Shen J, Guo R, Johnson CL, Kiguchi K, Walker CL (April 2006). "Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning". The Journal of Cell Biology. 173 (2): 279–89. doi:10.1083/jcb.200507119. PMC   2063818 . PMID   16636147.
  19. Cao Y, Kamioka Y, Yokoi N, Kobayashi T, Hino O, Onodera M, Mochizuki N, Nakae J (December 2006). "Interaction of FoxO1 and TSC2 induces insulin resistance through activation of the mammalian target of rapamycin/p70 S6K pathway". The Journal of Biological Chemistry. 281 (52): 40242–51. doi: 10.1074/jbc.M608116200 . PMID   17077083.
  20. Inoki K, Zhu T, Guan KL (November 2003). "TSC2 mediates cellular energy response to control cell growth and survival". Cell. 115 (5): 577–90. doi: 10.1016/S0092-8674(03)00929-2 . PMID   14651849. S2CID   18173817.
  21. Nellist M, Burgers PC, van den Ouweland AM, Halley DJ, Luider TM (August 2005). "Phosphorylation and binding partner analysis of the TSC1-TSC2 complex". Biochemical and Biophysical Research Communications. 333 (3): 818–26. doi:10.1016/j.bbrc.2005.05.175. PMID   15963462.
  22. Goncharova EA, Goncharov DA, Spaits M, Noonan DJ, Talovskaya E, Eszterhas A, Krymskaya VP (May 2006). "Abnormal growth of smooth muscle-like cells in lymphangioleiomyomatosis: Role for tumor suppressor TSC2". American Journal of Respiratory Cell and Molecular Biology. 34 (5): 561–72. doi:10.1165/rcmb.2005-0300OC. PMC   2644221 . PMID   16424383.
  23. Astrinidis A, Senapedis W, Coleman TR, Henske EP (December 2003). "Cell cycle-regulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B". The Journal of Biological Chemistry. 278 (51): 51372–9. doi: 10.1074/jbc.M303956200 . PMID   14551205.
  24. Nellist M, Verhaaf B, Goedbloed MA, Reuser AJ, van den Ouweland AM, Halley DJ (December 2001). "TSC2 missense mutations inhibit tuberin phosphorylation and prevent formation of the tuberin-hamartin complex". Human Molecular Genetics. 10 (25): 2889–98. doi: 10.1093/hmg/10.25.2889 . hdl: 1765/9803 . PMID   11741832.
  25. Benvenuto G, Li S, Brown SJ, Braverman R, Vass WC, Cheadle JP, Halley DJ, Sampson JR, Wienecke R, DeClue JE (December 2000). "The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination". Oncogene. 19 (54): 6306–16. doi: 10.1038/sj.onc.1204009 . PMID   11175345.
  26. Murthy V, Haddad LA, Smith N, Pinney D, Tyszkowski R, Brown D, Ramesh V (May 2000). "Similarities and differences in the subcellular localization of hamartin and tuberin in the kidney". American Journal of Physiology. Renal Physiology. 278 (5): F737–46. doi:10.1152/ajprenal.2000.278.5.F737. PMID   10807585. S2CID   13321027.
  27. Miloloza A, Rosner M, Nellist M, Halley D, Bernaschek G, Hengstschläger M (July 2000). "The TSC1 gene product, hamartin, negatively regulates cell proliferation". Human Molecular Genetics. 9 (12): 1721–7. doi: 10.1093/hmg/9.12.1721 . PMID   10915759.

Further reading