Radopholus similis

Last updated

Radopholus similis
Radopholus similis.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Nematoda
Class: Secernentea
Order: Tylenchida
Family: Pratylenchidae
Genus: Radopholus
Species:
R. similis
Binomial name
Radopholus similis
(Cobb, 1893) Thorne, 1949

Radopholus similis is a species of nematode known commonly as the burrowing nematode. [1] It is a parasite of plants, and it is a pest of many agricultural crops. It is an especially important pest of bananas, and it can be found on coconut, avocado, coffee, sugarcane, other grasses, and ornamentals. It is a migratory endoparasite of roots, causing lesions that form cankers. Infected plants experience malnutrition.

Contents

History and distribution

The nematode was first described from necrotic tissue in a species of Musa , the banana genus, in 1891. It is one of the most important root pathogens of banana crops, [2] causing yield losses of up to 30 to 60% in many countries. [3] It is known in temperate regions worldwide. [2]

R. similis is found in tropical environments and is therefore common in Africa, Asia, Australia, South and Central America, and southern areas of North America. These parasites are a great example of a disease greatly impacted by globalization. Large infection rates are fairly recent, as global trade and commercialization of crops gained popularity. [4] R. similis prefers warmer environments, hence the tropical habitats. R. similis is an obligate parasite, and therefore must have hosts to survive. Due to the inability to live without a host, they are found in environments where susceptible hosts flourish.

Hosts and symptoms

Radopholus similis parasites can be found in tropical climates, and therefore infect a lot of plants native to tropical areas. Common hosts that are economically important include: banana, coconut, coffee, ginger, sugarcane, ornamentals, and tea. [5] Although R. similis has not been found to infect citrus plants, it is closely related to another variety of burrowing nematodes, Radopholus citrophilus, that is a prominent pathogen to citrus plants. [5] As with a plethora of root diseases, the main symptoms of an infection from burrowing nematodes are stunted growth, rotting roots, and necrotic roots. [6] They are migratory endoparasites, and therefore can cause many localized necrotic patches throughout an infected root system. [5] R. similis signs are generally only seen in the roots, but secondary symptoms such as wilting, weakened structure, and stunting can be caused by the root damage these parasites inflict. In fact, infection via these parasites is referred to as “banana toppling disease” in bananas because the plants often topple due to severe root damage by these nematodes. Prominent symptoms can also vary by host. Black pepper plants often undergo yellowing due to lack of nutrient uptake, ginger plants often become stunted and develop lesions, and tea plants also exhibit stunting and leaf loss. [4]

Morphology

Adults and juveniles are vermiform in shape. Adults are sexually dimorphic. The male has a poorly developed stylet, a knob-like head, and a sharp, curved spicule enclosed in a sac. The male is 500 to 600 µm in length, while the female is about 550 to 880 µm long. The female has a well-developed stylet. Both male and female have long, tapered tails with rounded or indented ends. [7]

Biology and disease cycle

R. similis is a burrowing nematode, meaning it burrows in its host plants roots. These parasites are endoparasites, which refers to the method of obtaining nutrients. They sit inside the plant and siphon nutrients from the cytoplasm of the surrounding cells, instead of living outside the plant and stealing nutrients through other methods. They are also migratory endoparasites, meaning it enters the roots and is able to move throughout the host. Only females infect roots, as they complete egg laying inside the host. They are able to produce both sexually and asexually; and therefore, can be present in female, hermaphrodite, and male forms. [5] Individuals in all stages of the life cycle have stylets and can therefore infect roots and migrate throughout the host, as well as infect new hosts when the current host is spent. [5] [4] They often inhabit the parenchyma and females lay eggs (about 3-5 per day) in the inhabited tissues. [4] Once laid, eggs usually take about 5–10 days to hatch, 10–13 days to develop into adults, and about 2 days to become gravid. All of this equates to a 20-25 day life cycle from egg to gravid adult. [8]

The nematode completes its life cycle in about 21 days at 25 °C. [9] Females and juveniles feed inside roots, especially near the tips. Males with their weak stylets do not feed. Females lay two to six eggs per day. [7]

The nematode causes a disease condition called toppling or blackhead disease in plants. [9] In bananas they weaken the anchor roots and the plants can fall. The roots also fail to supply the plant with water and nutrients, causing reduced growth and development. [10]

Management

The nematode load in the soil can be reduced with fumigation and crop rotation. Cover crops that are not susceptible to the nematode, such as Crotalaria or Tagetes , can be sown. Disease-free sprouts raised from clean tissue cultures can be used.

There are a few notable management strategies used to control R. similis today. There are some nematicides available, although the use of these to control infections continuously declines. [4] Instead, the preferred method of control of R. similis is prevention and control of exporting infected crops. Common ways of controlling nematode include planting resistant or less susceptible hosts, seasonal rotation of crops, biological controls, planting nematode-free individuals, environmental controls, and fallowing. There is continuing research being performed regarding resistant varieties, especially exploring hybrid genotypes and new cultivars with decreased susceptibility. [11] Resistant hosts cause the nematodes to be unable to survive and reproduce, decreasing the population. There is also continued research regarding fungus (biological) controls for nematodes like R. similis. There is evidence that mutualistic relationships with mycorrhizal fungi may reduce the susceptibility of plant hosts. [12] [13] However, there are some conflicting results regarding this technique of nematode control, so it is not currently widely used. [12] [13] Seasonally rotating crop varieties wipe out the nematode populations in the “off” seasons if the crop planted is not a viable host for the parasites. [5] Fallowing is used in a similar instance, but instead of rotating plant varieties, fields are simply only used every other year. [14] Since R. similis is an obligate parasite, they cannot survive without an available host. Planting individuals grown in vitro and guaranteed nematode free prevents any presence of nematodes being inoculated into a crop field. Applying environmental controls such as hot water or increased sun exposure to saplings before planting to desiccate any nematodes present. [11]

Cultivation practices such as monoculture are increasing the susceptibility of host plants. The biggest historically important example of monoculture increasing infection is in bananas. The Gros Michel variety of bananas were wiped out by a fungus (commonly known as Panama Disease) and replaced by the Cavendish variety that is resistant to Panama Disease. [4] The Gros Michel variety was commercialized via monoculture, which caused it to be extremely susceptible to the Panama Disease. [4] However, this new Cavendish variety is also being monocultured, which is increasing its susceptibility to pathogens, such as R. similis.

Genetics

It is notable as an early exemplar, along with Radopholus arabocoffeae , [15] of the alternative flatworm mitochondrial code. [16]

Related Research Articles

<span class="mw-page-title-main">Parasitic disease</span> Medical condition

A parasitic disease, also known as parasitosis, is an infectious disease caused by parasites. Parasites are organisms which derive sustenance from its host while causing it harm. The study of parasites and parasitic diseases is known as parasitology. Medical parasitology is concerned with three major groups of parasites: parasitic protozoa, helminths, and parasitic arthropods. Parasitic diseases are thus considered those diseases that are caused by pathogens belonging taxonomically to either the animal kingdom, or the protozoan kingdom.

<span class="mw-page-title-main">Root-knot nematode</span> Genus of parasitic worms

Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.

<i>Meloidogyne incognita</i> Nematode worm, plant disease, many hosts

Meloidogyne incognita, also known as the southern root-nematode or cotton root-knot nematode is a plant-parasitic roundworm in the family Heteroderidae. This nematode is one of the four most common species worldwide and has numerous hosts. It typically incites large, usually irregular galls on roots as a result of parasitism.

<span class="mw-page-title-main">Soybean cyst nematode</span> Species of roundworm

The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pest to soybean crop yields in the U.S., targeting the roots of soybean and other legume plants. When infection is severe SCNs cause stunting, yellowing, impaired canopy development, and yield loss. The symptoms caused by SCNs can go easily unrecognized by farmers—in some cases there are no warning symptoms before a loss of 40% of the yield. Due to the slight stunting and yellowing, many farmers may mistake these symptoms as environmental problems when in fact they are SCNs. Another symptom of SCNs that may affect farmers' yields is stunted roots with fewer nitrogen-fixing nodules. Due to the fact that soybean cyst nematodes can only move a few centimeters in the soil by themselves, they mostly are spread via tillage or plant transplants. This area of infection will look patchy and nonuniform making diagnosis more difficult for farmers. They can be seen in the roots of summer soybean plants if the roots are taken out very carefully and gently washed with water. The egg masses should be seen as bright white or yellow "pearls" on the roots. The later the roots are pulled the harder it will be to diagnose due to the SCNs female dying and turning a much darker color, forming a "cyst". The best way to know if a field is infected by soybean cyst nematodes is to take a soil sample to a nematologist.

<i>Rotylenchulus reniformis</i> Species of roundworm

Rotylenchulus reniformis, the reniform nematode, is a species of parasitic nematode of plants with a worldwide distribution in the tropical and subtropical regions.

<i>Meloidogyne arenaria</i> Species of roundworm

Meloidogyne arenaria is a species of plant pathogenic nematodes. This nematode is also known as the peanut root knot nematode. The word "Meloidogyne" is derived from two Greek words that mean "apple-shaped" and "female". The peanut root knot nematode, M. arenaria is one of the "major" Meloidogyne species because of its worldwide economic importance. M. arenaria is a predominant nematode species in the United States attacking peanut in Alabama, Florida, Georgia, and Texas. The most damaging nematode species for peanut in the USA is M. arenaria race 1 and losses can exceed 50% in severely infested fields. Among the several Meloidogyne species that have been characterized, M. arenaria is the most variable both morphologically and cytologically. In 1949, two races of this nematode had been identified, race 1 which reproduces on peanut and race 2 which cannot do so. However, in a recent study, three races were described. López-Pérez et al (2011) had also studied populations of M. arenaria race 2, which reproduces on tomato plants carrying the Mi gene and race 3, which reproduces on both resistant pepper and tomato.

<i>Meloidogyne javanica</i> Species of roundworm

Meloidogyne javanica is a species of plant-pathogenic nematodes. It is one of the tropical root-knot nematodes and a major agricultural pest in many countries. It has many hosts. Meloidogyne javanica reproduces by obligatory mitotic parthenogenesis (apomixis).

Pratylenchus brachyurus is a plant parasitic nematode.

<i>Pratylenchus penetrans</i> Species of roundworm

Pratylenchus penetrans is a species of nematode in the genus Pratylenchus, the lesion nematodes. It occurs in temperate regions worldwide, regions between the subtropics and the polar circles. It is an animal that inhabits the roots of a wide variety of plants and results in necrotic lesions on the roots. Symptoms of P. penetrans make it hard to distinguish from other plant pathogens; only an assay of soil can conclusively diagnose a nematode problem in the field. P. penetrans is physically very similar to other nematode species, but is characterized by its highly distinctive mouthpiece. P. penetrans uses its highly modified mouth organs to rupture the outer surface of subterranean plant root structures. It will then enter into the root interior and feed on the plant tissue inside. P. penetrans is considered to be a crop parasite and farmers will often treat their soil with various pesticides in an attempt to eliminate the damage caused by an infestation. In doing this, farmers will also eliminate many of the beneficial soil fauna, which will lead to an overall degradation of soil quality in the future. Alternative, more environmentally sustainable methods to control P. penetrans populations may be possible in certain regions.

Helicotylenchus multicinctus is a plant pathogenic nematode that affects primarily bananas and plantains. Nematodes of the genus Helicotylenchus are spiral nematodes and feed on a large variety of plant species.

<i>Heterodera schachtii</i> Species of roundworm

Heterodera schachtii, the beet cyst eelworm or sugarbeet nematode, is a plant pathogenic nematode. It infects more than 200 different plants including economically important crops such as sugar beets, cabbage, broccoli, and radish. H. schachtii is found worldwide. Affected plants are marked by stunted growth, wilting, yellowing, decreased yields, and death. While there are many methods of control, crop rotation with non-susceptible plants is preferred.

<i>Paratylenchus hamatus</i> Species of roundworm

Paratylenchus hamatus, the fig pin nematode, is a species of migratory plant endoparasites, that causes lesions on plant roots resulting in symptoms of chlorosis, wilting and ultimately yield losses. They move and feed on different parts of host tissue throughout their life cycle in order to find enough susceptible host tissue to survive and reproduce. A wide range of host plant species are susceptible to the fig pin nematode, including many valuable fruit and vegetable crops such as figs, carrots and celery. They are also commonly found associated with woody perennials in California. P. hamatus inhabits soils in both Europe and North America, and was originally isolated from fig in central California in 1950.

Xiphinema diversicaudatum is an amphimictic ectoparasitic nematode species. This species has a characteristically long stylet capable of penetrating into a host's vascular tissue. They have a wide host range with some of the extensively studied ones being strawberry, hops and raspberry, due to their economic importance. The direct root damage caused through penetration near the root tip and formation of galls is a secondary concern when compared with the damage caused by vectoring the Arabis mosaic virus. The virus attaches to the interior cuticle lining and can be transferred from infected to uninfected root tissue as the nematode feeds and sheds. Management of this particular nematode relies on nematicides such as 1,3-Dichloropropene (Telone) at 40 gpa.or methyl bromide at 1000 lb/ac to control to 28 in deep.

Tylenchulus semipenetrans, also known as the citrus nematode or citrus root nematode, is a species of plant pathogenic nematodes and the causal agent of slow decline of citrus. T. semipenetrans is found in most citrus production areas and diverse soil textures worldwide. Their feeding strategy is semi-endoparasitic and has a very narrow host range among commonly grown crops. These nematodes are considered as major plant-parasitic nematode because they can cause 10-30% losses reported on citrus trees. They also parasitize other hosts such as olive, grape, persimmon and lilac. The citrus nematode was first discovered in California in 1913 by J. R. Hodges, a horticultural inspector for Los Angeles County, and was later described and named by Nathan Cobb that year. T. semipenetrans is the only species of Tylenchulidae that are economically important to agriculture.

Mesocriconema xenoplax is a species of plant parasitic nematodes. Nematodes of this particular species are collectively called ring nematodes.

<i>Tobacco rattle virus</i> Species of virus

Tobacco rattle virus (TRV) is a pathogenic plant virus. Over 400 species of plants from 50 families are susceptible to infection.

<i>Pratylenchus</i> Genus of roundworms

Pratylenchus is a genus of nematodes known commonly as lesion nematodes. They are parasitic on plants and are responsible for root lesion disease on many taxa of host plants in temperate regions around the world. Lesion nematodes are migratory endoparasites that feed and reproduce in the root and move around, unlike the cyst or root-knot nematodes, which may stay in one place. They usually only feed on the cortex of the root. Species are distinguished primarily by the morphology of the stylets.

Pratylenchus alleni is a migratory endoparasitic nematode, living inside of plant roots and feeding on parenchyma cells in the root cortex. P. alleni is an obligate biotroph, meaning it must have a living host in order to survive. Due to their incredibly broad host range, Pratylenchus species fall third in total economic impact, finishing just behind cyst nematodes and root knot nematodes (Meloidogyne). In Canada, it was isolated for the first time in 2011 in a soybean field.

Pasteuria is a genus of mycelial and endospore-forming, nonmotile gram-positive bacteria that are obligate parasites of some nematodes and crustaceans. The genus of Pasteuria was previously classified within the family Alicyclobacillaceae, but has since been moved to the family Pasteuriaceae.

Scutellonema bradys, also known as yam nematode, is a migratory endoparasitic nematode causing major damage to yam crop in many African tropical regions, as well in parts of South and Central America and Asia. They can cause reduction of 20-30% in tuber weight at harvest.

References

  1. Sekora, N. S. and W. T. Crow. Burrowing nematode, Radopholus similis. EENY-542. University of Florida IFAS. 2012.
  2. 1 2 O'Bannon J. H. (1977). "Worldwide dissemination of Radopholus similis and its importance in crop production". Journal of Nematology. 9 (1): 16–25. PMC   2620210 . PMID   19305565.
  3. Banana Nematodes: Pests and Diseases of American Samoa. Number 9. American Samoa Community College Community & Natural Resources Cooperative Research & Extension. 2004.
  4. 1 2 3 4 5 6 7 CAB International (November 2019). "Radopholus similis (burrowing nematode)". CABI; Invasive Species Compendium. Retrieved December 9, 2020.
  5. 1 2 3 4 5 6 Sekora, Nicholas S.; Crow, William (November 2018). "Featured Creatures; Radopholus similis". University of Florida, Institute of Food and Agricultural Sciences, Entomology and Nematology.
  6. "Radopholus similis". nemaplex.ucdavis.edu. Retrieved 2020-12-09.
  7. 1 2 Brooks, F. E. Burrowing nematode disease. American Phytopathological Society. 2013.
  8. Loos, Clive A. (January 1962). "Studies on the Life-history and Habits of the Burrowing Nematode, Radopliolus similis, the Cause of Black-head Disease of Banana" (PDF). The Helminthological Society of Washington. 29: 43–52 via bionames.org.
  9. 1 2 Luc, M., et al. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture 2nd Ed. Wallingford, Oxfordshire, UK: CABI Publishing. 2005. pg 616. ISBN   9781845931445
  10. Sarah, J. L., et al. The Burrowing Nematode of Bananas, Radopholus similis Cobb, 1913. INIBAP. 1996.
  11. 1 2 Risede, Jean-Michele; Chabrier, Christian; Dorel, Marc; Rhino, Beatrice; Lakhia, Kelly; Jenny, Christophe; Quénéhervé, Patrick (2009). "Recent and up-coming strategies to counter plant-parasitic nematodes in banana cropping systems of the French West Indies". Acta Horticulturae. 828 (828): 117–128. doi:10.17660/ActaHortic.2009.828.11 via Research Gate.
  12. 1 2 Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M. (2015). "Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved". Frontiers in Microbiology. 6: 1280. doi: 10.3389/fmicb.2015.01280 . ISSN   1664-302X. PMC   4646980 . PMID   26635750.
  13. 1 2 Elsen, A.; Baimey, H.; Swennen, R.; De Waele, D. (2003-10-01). "Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility". Plant and Soil. 256 (2): 303–313. doi:10.1023/A:1026150917522. ISSN   1573-5036. S2CID   10544152.
  14. "Nematode Management Guidelines--UC IPM". ipm.ucanr.edu. Retrieved 2020-12-09.
  15. "Taxonomy browser (Radopholus arabocoffeae)".
  16. Joachim EM Jacob; Bartel Vanholme; Thomas Van Leeuwen; Godelieve Gheysen (2009). "A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis". BMC Res Notes. 2: 192. doi: 10.1186/1756-0500-2-192 . PMC   2761399 . PMID   19778425.