Ropalidia marginata | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Family: | Vespidae |
Subfamily: | Polistinae |
Tribe: | Ropalidiini |
Genus: | Ropalidia |
Species: | R. marginata |
Binomial name | |
Ropalidia marginata le Peletier, 1836 | |
Subspecies | |
|
Ropalidia marginata is an Old World species of paper wasp. It is primitively eusocial, not showing the same bias in brood care seen in other social insects with greater asymmetry in relatedness. [1] [2] The species employs a variety of colony founding strategies, sometimes with single founders and sometimes in groups of variable number. [3] The queen does not use physical dominance to control workers; there is evidence of pheromones being used to suppress other female workers from overtaking queenship. [4]
R. marginata was originally described by Johan Christian Fabricius in 1793 under the name Vespa ferruginea, but that name was previously applied to a different species, so the oldest available name for the species was given by Amédée Louis Michel le Peletier in 1836. One of its subspecies, R. marginata jocund from New Guinea and Australia, was described in 1898, and two others, R. marginata rufitarsis from Myanmar and R. marginata sundaica from Indonesia and the Malay Peninsula, were described in 1941. [1] [2] R. marginata is an insect, having six legs. It is in the order Hymenoptera, containing wasps, ants and bees. It is in the family Vespidae, with wasps, yellow jackets, and hornets. It is in the subfamily Polistinae, containing eusocial wasps and it is in the tribe Ropalidiini. On the Indian subcontinent, there are 22 recognized species of the genus Ropalidia. The species R. travancorica, once thought separate, was determined synonymous with R. marginata after intensive specimen comparisons in 1989. R. marginata is most closely related to R. spatulata and R. brevita. The male antenna and genitalia are similar between R. brevita and R. marginata. [5] [6]
R. marginata are a dark reddish color (slightly lighter than Ropalidia revolutionalis ), with yellow spots on some joints and a yellow ring around the lower abdomen. Males differ from females by having a weaker mandible and lacking a stinger. [7] The female workers are not morphologically different from the queen and are more distinguishable by behavior. [8]
Females are hard to distinguish morphologically except for their level of ovary development, which generally increases with their age. [9] Females are the default workers of R. marginata, but they may also rise to queenship by taking over a resident queen, founding a new colony, or adopting an abandoned one. [10]
Female workers forage to feed themselves and non-foragers, such as the queen, larvae, and males. They help to build the nest and care for the larvae. [11] Workers regulate the foraging levels within the colony through aggression, and are a good example of self regulation in insect societies. [12] Workers may mate with males and remain inseminated even if they are never able to attain queenship and produce offspring. [8] Worker-worker relatedness is not asymmetrically higher than relatedness between workers and males or workers and the queen. This is because of overlapping matrilines and patrilines within the colony which decreases relatedness overall between individuals. [3]
When a queen is lost, a worker has the ability to take her place. The mechanism by which the next-in-line-queen is chosen is cryptic; neither age nor dominance accurately predicts the successor. The potential queen may or may not be inseminated or have developed ovaries. The only certainty is that after the queen is gone, the worker who is the potential queen will become very aggressive. The aggressiveness subsides after about two days. [13] The potential queen seems to require this heightened aggression in order to boost her own development. [13]
Primitively eusocial societies are typically headed by behaviourally aggressive queens, who use aggression to suppress worker reproduction. However, the queen in R. marginata is a "docile sitter" who does not use physical aggression to maintain her reproductive monopoly in the colony. [14] [15] The queens are suspected to control workers through pheromones. [16] She uses these pheromones to signal her presence and fecundity to her workers, who perceive these signals and refrain from reproducing. [17] The tenure length, age, and productivity of a queen vary greatly on a case-by-case basis. [8]
The exact mechanisms by which the queen is recognized by her colony are not fully understood. One possibility is that there are chemicals in the queen's Dufour's glands that signal her queen status and influence workers who are on the nest with those chemicals. A potential queen who is acting aggressively can be experimentally subdued by applying the old queen's Dufour's gland's chemicals to the nest. [18]
The queen interacts with her workers primarily through chemical communication; physical interactions between the queen and workers do not serve a communicative function. [18] She does not regulate worker behaviors such as foraging and nest matienance. [19]
Males are produced less frequently and in less quantity than females are produced. After eclosion males remain on the nest for up to a week. Upon leaving, they live nomadically and mate with females of other nests. [7] Males do not assist in any of the colony maintenance activities while they reside in the nest. [16] They are not well suited for foraging or defending the colony because of their weaker mandibles and lack of a stinger. They are dependent on female workers feeding them and are sometimes observed to cannibalize nest larvae. It has been experimentally demonstrated that males of R. marginata have the ability to feed larvae, but they do not because they lack food access and females do not give them an opportunity to do so in natural populations. [7]
R. marginata makes gymnodomous nests with up to 500 cells and up to 10 pedicels. [9] The nests are made of paper, which are produced by wasps masticating cellulose and mixing it with saliva. [3] The nests are usually found in closed spaces with small openings in natural and man-made structures.
The distribution of R. marginata extends as far west as Pakistan and as far east as New Guinea, Queensland, and some eastern Pacific islands. [6] They are the most common social wasp in India. [9] Although R. marginata has been studied extensively in India, there is a lack of literature about the animal in other parts of its range.
In India, Ropalidia marginata has an aseasonal, indeterminate and perennial colony cycle, which means that nest initiation starts throughout the year, and nests are active throughout the year. [20] Colonies are started more frequently from May to July when food is abundant and less frequently from December to February when temperatures are colder. [3] Each colony has one reproductive female, a queen, and that position can be taken by adopting an abandoned nest, taking over queenship at an existing nest, or starting a new nest alone or with other foundresses. [3]
The amount of time it takes for a brood to fully develop is highly variable and is complicated by occurrences of nest cannibalism, which is often undetected as replacement eggs appear. Males leave the nest 2–7 days after eclosion. Tenure on the nest for a worker female is more variable. Their residence time ranges from 1–60 days. [9]
Colonies can be started by as many as 20 foundresses, but most frequently they are started with four or less. [9] Studies on wild and captive populations indicate that it is most common for colonies to start with three or more foundresses, rather than two foundresses; single foundress colonies are the least common. [3] Although the multiple foundress colonies were less likely to fail, all colonies, regardless of number of foundresses, had the same per capita productivity. Only one individual acts as an egg layer in each colony. [8]
Individuals may migrate from their birth or founded colony to take up residence in another. This is most common during the pre-emergence phase and when there are around forty to fifty adults on the home nest. [9] [21] Migrant wasps are more likely to be accepted while they are younger, which is generally less than six days old. Age has been shown to be the determining factor for whether the resident wasps react with hostility or tolerance. Age might be an indicator of ovarian development (reproductive threat) or of other important qualities such as plasticity for role specialization. [21] Multiple-foundress colonies are preferentially selected by migrant wasps, despite the fact that individuals are more successful at becoming a queen in a single-foundress colony. [3] Young migrants become fully integrated into the new colony, becoming foragers and sometimes taking over the role of queen. [21]
In some cases, all adult wasps will be absent from a nest when a migrant finds it. Females sometimes adopt these abandoned nests and take over queenship in variable numbers of foundresses. This has been observed to be more common in predator-protected vespiaries than in the field. [3]
Females feed larvae by masticating acquired solid food for three to four minutes before feeding it to the larvae. She feeds about two larvae the solid food and then grooms herself. Then she feeds six larvae with a liquid of regurgitated food and grooms herself again. Females also engage in behaviors such as fanning wings, antennal drumming, and body jerks which are sometimes synchronous between many females. These behaviors are expected to be related to adult/larval communication. Female feeding behavior is more complicated than that of males, who do not use liquid food or this set of behaviors. [7]
Males have been experimentally shown to be capable of deliberately delivering food to larvae when females are absent and food surplus is available. Males feed the larvae with the same proportion of individuals as females. They are, however much less efficient than females at feeding. They spend over 90% of feeding bouts masticating and end up feeding far fewer larvae. The males also preferentially feed the largest larvae, resulting in the death of many smaller and younger larvae. It was only possible to observe this behavior by removing all females from a nest and hand feeding the males, as the males cannot forage on their own and have no opportunity to care for larvae if females occupy this role. While males are typically not responsible for feeding larvae in naturally occurring populations, they are capable of doing so. [7]
Aggression in the form of chasing and sometimes stinging is needed to defend the nests from predators and non-nestmates. Older females from different nests are chased away, as are predators such as Vespa tropica . [22] Dominance relationships, mediated by aggression, control foraging amidst workers. [4] Aggressive behavior is a crucial part of the transition from worker to queen. [19]
Behaviorally dominant queens are standard among other primitively eusocial wasps, but in R. marginata, it is the workers who engage in subordinate-dominant behavior. Among the workers, the dominance hierarchy does not relate to reproductive competition or accurately predict individuals to take over queenship. Worker dominant-subordinate interactions seem to regulate foraging behavior. [19] This is supported by the fact that dominance is received more by foragers and that frequency of received dominance correlates with foraging rate. It has been experimentally shown that dominance frequency is related with hunger of the colony, suggesting that dominance interactions are a system of peer regulation to support the survival of the colony. [19]
Nestmates act tolerantly towards their fellow nestmates, which can still be recognized after days of isolation. [23] Ropalidia marginata can distinguish nestmates from non-nestmates, and react aggressively to non-nestmates that are older, while younger foreigners may be accepted into the colony. [21] Discriminating nestmates from non-nestmates is dependent on acquiring and encountering odors from the nest post-eclosion. Individuals removed from a nest before eclosion will not recognize, or be recognized by, members of that nest. There is no indication that there is any recognition based on genetic relatedness. [23]
These predatory wasps are solitary foragers (that means each forager finds the prey, kills it and brings that back to the nest all alone). Foragers typically forage within about 300 to 700 m from their nests, though if food is scarce, they can travel up to about 1.5 km from their nest. [24] With experience, they acquire a vivid familiarity with their foraging range; they perhaps remember the sites from where they have collected food previously. [25] Such familiarity with the foraging landscape eventually helps them to reduce their search for food.
The haplodiploid genetic system creates asymmetry in relatedness of most Hymenoptera species. [8] R. marginata, however, have increasingly unrelated workers and broods because of "simultaneous production of several different patrilines and matrilines within a colony." [3] Serial polygyny works against the inclusive fitness benefits workers have of caring for broods because of reduced relatedness. [8]
Gadagkar devised a unified model that makes predictions about what proportion of the population of R. marginata "should opt for a selfish solitary nesting strategy and what proportion should opt for an altruistic worker strategy" (853). [11] From this, he was able to predict that 5% should opt for the selfish solitary nesting strategy while 95% should opt for the altruistic worker strategy. [11]
Gadagkar et al. genotyped R. marginata mothers and daughters at a "few non-specific esterase loci" to infer the genotypes of the haploid fathers or estimate the number of fathers needed to produce the daughters observed (850). [11] The researchers ultimately found, "R. marginata queens mate with 1–3 different males and the average relatedness among their daughters thus drops from the theoretically expected 0.75 to about 0.50, thus entirely negating the advantage of haplodiploidy for social evolution, as predicted by Hamilton" (851). [11] Gadagkar "found no evidence for intra-colony kin recognition" (851). [11]
To avoid inbreeding, most taxa recognize kin and do not consider them in mate selection. R. marginata however show no indication of discriminating against nestmates for mate choice in both males and females. Because males disperse and live nomadically after leaving the nest and breeding does not occur on the nest, inbreeding is relatively unlikely in this species even without the anti-incest behavior. [22] Body size is arbitrary in mate choice for both males and females of this species. [22]
Colonies of R. marginata often outlive the queens; workers may serve different queens throughout their lifetimes. This creates overlapping matrilines within the colony where workers end up caring for the brood of different mothers, yet again decreasing the relatedness amidst workers. [8]
Vespa tropica , a hornet species, is a key predator of R. marginata brood in Indian populations. [3] [8] As a predator avoidance strategy, nests are often built to only be accessible through small openings, thus, preventing hornets from getting through. [26]
The Polistinae is a subfamily of eusocial wasps belonging to the family Vespidae. They are closely related to the wasps and true hornets of the subfamily Vespinae, containing four tribes. With about 1,100 species total, it is the second-most diverse subfamily within the Vespidae, and while most species are tropical or subtropical, they include some of the most frequently encountered large wasps in temperate regions.
The European paper wasp is one of the most common and well-known species of social wasps in the genus Polistes. Its diet is more diverse than those of most Polistes species—many genera of insects versus mainly caterpillars in other Polistes—giving it superior survivability compared to other wasp species during a shortage of resources.
Polistes chinensis is a polistine vespid wasp in the cosmopolitan genus Polistes, and is commonly known as the Asian, Chinese or Japanese paper wasp. It is found in East Asia, in particular China and Japan. The subspecies P. chinensis antennalis is an invasive species in New Zealand, having arrived in 1979.
Polistes annularis is a species of paper wasp found throughout the eastern half of the United States. This species of red paper wasp is known for its large size and its red-and-black coloration and is variably referred to as a ringed paper wasp or jack Spaniard wasp. It builds its nest under overhangs near bodies of water that minimize the amount of sunlight penetration. It clusters its nests together in large aggregations, and consumes nectar and other insects. Its principal predator is the ant, although birds are also known to prey on it. Unlike other wasps, P. annularis is relatively robust in winter conditions, and has also been observed to store honey in advance of hibernation. This species has also been used as a model species to demonstrate the ability to use microsatellite markers in maternity assignment of social insects.
Polistes metricus is a wasp native to North America. In the United States, it ranges throughout the southern Midwest, the South, and as far northeast as New York, but has recently been spotted in southwest Ontario. A single female specimen has also been reported from Dryden, Maine. Polistes metricus is dark colored, with yellow tarsi and black tibia. Nests of Polistes metricus can be found attached to the sides of buildings, trees, and shrubbery.
Polistes fuscatus, whose common name is the dark or northern paper wasp, is widely found in eastern North America, from southern Canada through the southern United States. It often nests around human development. However, it greatly prefers areas in which wood is readily available for use as nest material, therefore they are also found near and in woodlands and savannas. P. fuscatus is a social wasp that is part of a complex society based around a single dominant foundress along with other cofoundresses and a dominance hierarchy.
Belonogaster juncea is a typical quasisocial paper wasp from sub-saharan Africa and south-western Asia. It is the type species for the genus Belonogaster.
Polistes carolina is one of two species of red paper wasp found in the eastern United States and is noted for the finer ridges on its propodeum. It is a social wasp in the family Vespidae and subfamily Polistinae. The species is native to the United States from Texas to Florida, north to New York, and west to Nebraska. The wasp's common name is due to the reddish-brown color of its head and body. P. carolina prefer to build their nests in protected spaces.
Belonogaster juncea juncea is a subspecies of Belonogaster juncea and is classified as a primitively eusocial wasp, meaning that the species is social while exhibiting a morphology that is indistinguishable from that of other castes. It is also classified as a type of African Paper Wasp. Many of the studies relating specifically to B. j. juncea take place at the University of Yaoundé in Cameroon.
Ropalidia fasciata, a common paper wasp, is a wide-ranging species that is distributed from India to the Lesser Sunda Islands, Palawan, and Ryukyu Islands, occupying the northern edge of Ropalidia's larger distribution. These primitively eusocial wasps are unique in that they do not exhibit the strict matrifilial, single-queen social structure found in many species of social insects. Instead, colonies are founded based on associations between several females, or 'foundresses'.
Polistes bellicosus is a social paper wasp from the order Hymenoptera typically found within Texas, namely the Houston area. Like other paper wasps, Polistes bellicosus build nests by manipulating exposed fibers into paper to create cells. P. bellicosus often rebuild their nests at least once per colony season due to predation.
Polistes canadensis is a species of red paper wasp found in the Neotropical realm. It is a primitively eusocial wasp as a member of the subfamily Polistinae. A largely predatory species, it hunts for caterpillar meat to supply its colony, often supplementing its developing larvae with nectar. The most widely distributed American species of the genus Polistes, it colonizes multiple combs, which it rears year-round.
Belonogaster petiolata is a species of primitively eusocial wasp that dwells in southern Africa, in temperate or subhumid climate zones. This wasp species has a strong presence in South Africa and has also been seen in northern Johannesburg. Many colonies can be found in caves. The Sterkfontein Caves in South Africa, for example, contain large populations of B. petiolata.
Polistes biglumis is a species of social wasp within Polistes, the most common genus of paper wasp. It is distinguished mainly by its tendency to reside in montane climates in meadows or alpine areas. Selection pressure from the wasp's environment has led to several idiosyncrasies of its behavior and lifecycle with respect to its relative species in the genus Polistes. It alone among paper wasps is often polyandrous. In addition, it has a truncated nesting season that gives rise to unique competitive dynamics among females of the species. P. biglumis wasps use an odor-based recognition system that is the basis for all wasp-to-wasp interaction of the species. The wasp's lifecycle is highly intertwined with that of Polistes atrimandibularis, an obligate social parasite wasp that frequently invades the combs of P. biglumis wasps.
Ropalidia revolutionalis, the stick-nest brown paper wasp, is a diurnal social wasp of the family Vespidae. They are known for the distinctive combs they make for their nests, and they are mostly found in Queensland, Australia in the areas of Brisbane and Townsville. They are an independent founding wasp species, and they build new nests each spring. They can be helpful because they control insect pests in gardens.
Ropalidia plebeiana is a eusocial temperate paper wasp. It is unique, as it is the only temperate wasp in the typically tropical Ropalidia genus. R. plebeiana is widely distributed in eastern Australia, and recently have been found making huge nest aggregations, with thousands of nests on trunks of trees, in south-eastern New South Wales.
Polistes japonicus is a eusocial paper wasp found in Japan. It was first described by Henri Louis Frédéric de Saussure in 1858. It is closely related to Polistes formosanus. This species lives in small colonies with few workers and a foundress queen. Nests of these wasps are sometimes used as a traditional medicine in Korea, China, and Japan.
Polistes versicolor, also known as the variegated paper wasp or yellow paper wasp, is a subtropical social wasp within Polistes, the most common genus of paper wasp. It is the most widely distributed of South American wasp species and is particularly common in the Southeastern Brazilian states. This social wasp is commonly referred to as the yellow paper wasp due to the distinct yellow bands found on its thorax and abdomen. The P. versicolor nest, made of chewed vegetable fiber, is typically a single, uncovered comb attached to the substrate by a single petiole. The yellow wasp is frequently found in urban areas. New nests and colonies are usually founded by an association of females, sometimes in human buildings.
Polistes erythrocephalus is a species of paper wasp in the subfamily Polistinae of family Vespidae found in Central and South America. P. erythrocephalus is a eusocial wasp, meaning that it possesses both reproductive and non-reproductive castes. The cooperation between the two castes to raise young demonstrates the altruistic nature of these wasps. P. erythrocephalus exhibits a four-stage colony cycle, as do many other Polistes wasps. This species generally feeds on larvae, occasionally their own, and is preyed upon by species such as army ants.
Mischocyttarus mexicanus cubicola is a neotropical subspecies of paper wasp found in the New World. It is a social wasp that demonstrates two different types of nesting strategies, depending upon context. This context-dependent trait makes Mischocyttarus mexicanus cubicola a good model to study social biology within social wasps. In detail, this trait allows for the females of this species to form nests both individually and as co-founders with other females within the same colony. This subspecies is also known to exhibit cannibalism, with M. m. cubicola queens feeding on their own larvae for nourishment when unaided by workers.