S100A1

Last updated

S100A1
Protein S100A1 PDB 1k2h.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases S100A1 , S100, S100-alpha, S100A, S100 calcium-binding protein A1, S100 calcium binding protein A1
External IDs OMIM: 176940; MGI: 1338917; HomoloGene: 4566; GeneCards: S100A1; OMA:S100A1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006271

NM_011309

RefSeq (protein)

NP_006262

NP_035439

Location (UCSC) Chr 1: 153.63 – 153.63 Mb Chr 3: 90.42 – 90.42 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein S100-A1, also known as S100 calcium-binding protein A1 is a protein which in humans is encoded by the S100A1 gene. [5] [6] S100A1 is highly expressed in cardiac and skeletal muscle, and localizes to Z-discs and sarcoplasmic reticulum. S100A1 has shown promise as an effective candidate for gene therapy to treat post-myocardially infarcted cardiac tissue.

Structure

S100A1 is a member of the S100 family of proteins expressed in cardiac muscle, skeletal muscle, and the brain, [7] with the highest density at Z-lines and the sarcoplasmic reticulum. [8] In its dimerized form, S100A1 contains four EF-hand calcium-binding motifs, [9] and can exist as either a heterodimer or a homodimer. The homodimer is a high-affinity complex (nanomolar range or tighter) stabilized by hydrophobic packing within an X-type four-helix bundle formed by helices 1, 1′, 4, and 4′.

Protein nuclear magnetic resonance spectroscopy shows that each monomer is helical and contains two EF-hand loops: one in the N-terminus and a canonical EF-hand in the C-terminus. The C-terminal site has higher calcium affinity, with a dissociation constant of about 20 µM. The two EF-hands are positioned adjacent to each other in three-dimensional space and are linked by a short beta sheet (residues 27–29 and 68–70). Calcium binding triggers a conformational change in helix 3, which reorients from being nearly antiparallel to helix 4 to being roughly perpendicular. This mechanism is atypical among EF-hand proteins because the entering helix moves rather than the exiting one. The rearrangement exposes a large hydrophobic pocket between helices 3, 4, and the hinge region, which mediates most calcium-dependent target interactions.

These structural features are generally conserved across the S100 family, although helices 3, 4, and the hinge region are the most divergent areas. Sequence variation in these regions likely fine-tunes calcium-dependent target binding specificity. [10] S-Nitrosylation of Cys85 further modifies the protein by reorganizing the C-terminal helix and the linker connecting the two EF-hands. [11] The most accurate high-resolution solution structure of human apo-S100A1 (PDB accession code: 2L0P) was determined by NMR spectroscopy in 2011. [12]

In addition to Ca²⁺, S100A1 also binds Zn²⁺. Mass spectrometry and isothermal titration calorimetry show up to four Zn²⁺ ions per monomer, with two high-affinity sites located within the EF-hands and two lower-affinity sites outside them. Zn²⁺ competes with Ca²⁺ at the EF-hands, producing mixed 2Ca²⁺:S100A1:2Zn²⁺ species under saturating conditions. QM/MM modeling suggests that the N-terminal EF-hand favors Zn²⁺, while the C-terminal site can accommodate both metals. Functionally, Ca²⁺ binding increases thermal stability, whereas excess Zn²⁺ destabilizes the protein and promotes aggregation. Despite this, S100A1 remains dimeric across all tested metal concentrations. [13]

Function

S100 proteins are localized in the cytoplasm and/or nucleus of many cell types, where they regulate processes such as cell cycle progression and differentiation. S100A1 may contribute to stimulation of Ca2+-induced Ca2+ release, inhibition of microtubule assembly, and inhibition of protein kinase C-mediated phosphorylation.

During development, S100A1 is expressed in the primitive heart at embryonic day 8 at similar levels in both atria and ventricles. By embryonic day 17.5, expression becomes enriched in the ventricular myocardium and reduced in atrial tissue. [14]

S100A1 is a regulator of myocardial contractility. Overexpression in rabbit or murine cardiomyocytes enhances contractile performance by increasing sarcoplasmic reticular Ca2+ transients and uptake, modifying myofibrillar Ca2+ sensitivity, enhancing SERCA2A activity, and promoting calcium-induced calcium release. [15] [16] [17] S100A1 increases the gain of excitation-contraction coupling [18] and decreases Ca2+ spark frequency in cardiomyocytes. [19] It also enhances L-type calcium channel-mediated transsarcolemmal influx in a protein kinase A-dependent manner. [20] S100A1 also interacts with the PEVK region of Titin in a Ca2+-dependent manner, reducing passive force in vitro and suggesting a role in modulating Titin-based passive tension before systole. [21] [22] In mice lacking S100A1, cardiac reserve under β-adrenergic stimulation is reduced, with impaired contraction and relaxation rates and diminished Ca2+ sensitivity, although these animals do not develop cardiac hypertrophy or dilation with age. [23]

Clinical significance

Expression changes in disease

S100A1 expression is altered in several pathological contexts. In animal models, protein levels are increased in right ventricular cardiac hypertrophy associated with pulmonary hypertension, [24] and in brain, skeletal muscle, and cardiac muscle in type I diabetes mellitus. [25] At the transcriptional level, S100A1 helps regulate the genetic program underlying hypertrophy by inhibiting α1-adrenergic induction of genes such as MYH7, ACTA1, and S100B. [26]

Cardiac disease

In humans, reduced myocardial S100A1 expression has been linked to cardiomyopathies. [27] Importantly, left ventricular assist device therapy does not restore myocardial S100A1 levels in patients with end-stage heart failure. [28]

S100A1 regulates endothelial cell function, where its deficiency impairs post-ischemic angiogenesis. Downregulation has been observed in hypoxic tissue from patients with limb ischemia. [29] [30] In melanocytic cells, S100A1 expression may also be regulated by MITF. [31]

Therapeutic potential

Therapeutic strategies have investigated S100A1 gene transfer. In a rat model of myocardial infarction, intracoronary adenoviral delivery of S100A1 restored Ca2+ handling, normalized intracellular sodium, reversed fetal gene expression, preserved contractility, reduced hypertrophy, and improved inotropic reserve. [32] [33] Similarly, transgenic overexpression of S100A1 in mice subjected to infarction preserved contractility, Ca2+ cycling, and β-adrenergic signaling, while preventing hypertrophy, apoptosis, and progression to heart failure, ultimately improving survival. [34] [35] Gene transfer to engineered heart tissue has also been shown to enhance contractile performance of tissue grafts, suggesting potential applications in regenerative therapy. [36]

Biomarker potential

S100A1 has also been studied as a diagnostic and prognostic biomarker. Plasma levels rise early during acute myocardial ischemia, with a distinct timecourse compared to creatine kinase, CKMB, and troponin I. [37] After ischemic injury, S100A1 is released from cardiomyocytes and can signal through Toll-like receptor 4 to modulate myocardial damage. [38] Extracellular S100A1 also protects neonatal murine cardiomyocytes against apoptosis through ERK1/2-dependent pathways, suggesting that release from injured cells may function as an intrinsic survival mechanism. [39] Elevated S100A1 has also been observed during cardiopulmonary bypass, both in infants with cyanotic heart disease undergoing uncontrolled hyperoxic reoxygenation [40] and in adults undergoing cardiac surgery. [41]

Drug interactions

Several drugs—including Pentamidine, Amlexanox, Olopatadine, Cromolyn, and Propranolol—bind to S100A1, though their affinities are generally in the mid-micromolar range. [10]

Research

S100A1 has emerged as a promising therapeutic target in heart failure research. Preclinical studies in large animal models and experiments on failing human cardiomyocytes have demonstrated that restoring S100A1 expression can reverse contractile dysfunction, normalize Ca2+ signalling, and improve overall myocardial performance. [42] In a large-animal model of post-ischemic heart failure, cardiac-specific delivery of S100A1 via an AAV9 vector restored contractile reserve and prevented adverse remodeling. [43] These findings highlight the translational potential of S100A1-based therapy.

S100A1 is a multifaceted therapeutic target that bridges basic cardiac physiology and clinical application. [44] [45] [46] [47] Collectively, these works propose that S100A1 modulates multiple aspects of cardiac physiology, including excitation–contraction coupling, β-adrenergic signaling, and mitochondrial energy metabolism.

Because of these pleiotropic effects, S100A1 gene therapy has been positioned as a potentially safer and more durable alternative to conventional heart failure drugs, which often target single signaling pathways. Preclinical data suggest that viral-mediated S100A1 delivery not only enhances contractility but also prevents maladaptive hypertrophy, apoptosis, and progression to heart failure. [48] Current expert consensus places S100A1-based therapy “on the verge” of early clinical trials, with the potential to become part of a new generation of gene-based strategies for treating advanced heart failure. [49] [50]

Interactions

S100 interacts with

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000160678 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000044080 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: S100A1 S100 calcium binding protein A1".
  6. Morii K, Tanaka R, Takahashi Y, Minoshima S, Fukuyama R, Shimizu N, et al. (February 1991). "Structure and chromosome assignment of human S100 alpha and beta subunit genes". Biochemical and Biophysical Research Communications. 175 (1): 185–191. Bibcode:1991BBRC..175..185M. doi:10.1016/S0006-291X(05)81218-5. PMID   1998503.
  7. Engelkamp D, Schäfer BW, Erne P, Heizmann CW (October 1992). "S100 alpha, CAPL, and CACY: molecular cloning and expression analysis of three calcium-binding proteins from human heart". Biochemistry. 31 (42): 10258–10264. doi:10.1021/bi00157a012. PMID   1384693.
  8. Maco B, Mandinova A, Dürrenberger MB, Schäfer BW, Uhrík B, Heizmann CW (2001). "Ultrastructural distribution of the S100A1 Ca2+-binding protein in the human heart". Physiological Research. 50 (6): 567–574. doi: 10.33549/physiolres.930109 . PMID   11829317.
  9. Marenholz I, Heizmann CW, Fritz G (October 2004). "S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature)". Biochemical and Biophysical Research Communications. 322 (4): 1111–1122. Bibcode:2004BBRC..322.1111M. doi:10.1016/j.bbrc.2004.07.096. PMID   15336958.
  10. 1 2 Wright N, Cannon B, Zimmer D, Weber D (1 May 2009). "S100A1: Structure, Function, and Therapeutic Potential". Current Chemical Biology. 3 (2): 138–145. doi:10.2174/2212796810903020138. PMC   2771873 . PMID   19890475.
  11. Lenarčič Živković M, Zaręba-Kozioł M, Zhukova L, Poznański J, Zhukov I, Wysłouch-Cieszyńska A (23 November 2012). "Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein". The Journal of Biological Chemistry. 287 (48): 40457–40470. doi: 10.1074/jbc.m112.418392 . PMC   3504761 . PMID   22989881.
  12. Nowakowski M, Jaremko Ł, Jaremko M, Zhukov I, Belczyk A, Bierzyński A, et al. (May 2011). "Solution NMR structure and dynamics of human apo-S100A1 protein" . Journal of Structural Biology. 174 (2): 391–399. doi:10.1016/j.jsb.2011.01.011. PMID   21296671.
  13. Baksheeva VE, Roman AY, Villard C, Devred F, Byrne D, Yatoui D, et al. (December 2021). "Mechanism of Zn²⁺ and Ca²⁺ Binding to Human S100A1". Biomolecules. 11 (12): 1823. doi: 10.3390/biom11121823 . PMC   8699212 . PMID   34944467.
  14. Kiewitz R, Lyons GE, Schäfer BW, Heizmann CW (December 2000). "Transcriptional regulation of S100A1 and expression during mouse heart development". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1498 (2–3): 207–219. doi:10.1016/s0167-4889(00)00097-5. PMID   11108964.
  15. 1 2 Most P, Remppis A, Pleger ST, Löffler E, Ehlermann P, Bernotat J, et al. (September 2003). "Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance". The Journal of Biological Chemistry. 278 (36): 33809–33817. doi: 10.1074/jbc.M301788200 . PMID   12777394.
  16. Remppis A, Most P, Löffler E, Ehlermann P, Bernotat J, Pleger S, et al. (2002). "The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes". Basic Research in Cardiology. 97 Suppl 1 (7): I56 –I62. doi:10.1007/s003950200031. PMID   12479236. S2CID   25461816.
  17. Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Börries M, et al. (November 2001). "S100A1: a regulator of myocardial contractility". Proceedings of the National Academy of Sciences of the United States of America. 98 (24): 13889–13894. Bibcode:2001PNAS...9813889M. doi: 10.1073/pnas.241393598 . PMC   61137 . PMID   11717446.
  18. Kettlewell S, Most P, Currie S, Koch WJ, Smith GL (December 2005). "S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes". Journal of Molecular and Cellular Cardiology. 39 (6): 900–910. doi:10.1016/j.yjmcc.2005.06.018. PMID   16236309.
  19. Völkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR, Wegner FV, et al. (February 2007). "S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes". Cell Calcium. 41 (2): 135–143. doi:10.1016/j.ceca.2006.06.001. PMID   16919727.
  20. Reppel M, Sasse P, Piekorz R, Tang M, Roell W, Duan Y, et al. (October 2005). "S100A1 enhances the L-type Ca2+ current in embryonic mouse and neonatal rat ventricular cardiomyocytes". The Journal of Biological Chemistry. 280 (43): 36019–36028. doi: 10.1074/jbc.M504750200 . PMID   16129693.
  21. 1 2 Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer MS, et al. (October 2001). "Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1". Biophysical Journal. 81 (4): 2297–2313. Bibcode:2001BpJ....81.2297Y. doi:10.1016/S0006-3495(01)75876-6. PMC   1301700 . PMID   11566799.
  22. Fukushima H, Chung C, Granzier H (2010). "Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium". Journal of Biomedicine & Biotechnology. 2010: 727239. doi: 10.1155/2010/727239 . PMC   2855102 . PMID   20414336.
  23. Du XJ, Cole TJ, Tenis N, Gao XM, Köntgen F, Kemp BE, et al. (April 2002). "Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice". Molecular and Cellular Biology. 22 (8): 2821–2829. doi:10.1128/mcb.22.8.2821-2829.2002. PMC   133731 . PMID   11909974.
  24. Ehlermann P, Remppis A, Guddat O, Weimann J, Schnabel PA, Motsch J, et al. (February 2000). "Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic pulmonary hypertension". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1500 (2): 249–255. doi: 10.1016/s0925-4439(99)00106-4 . PMID   10657594.
  25. Zimmer DB, Chessher J, Wilson GL, Zimmer WE (December 1997). "S100A1 and S100B expression and target proteins in type I diabetes". Endocrinology. 138 (12): 5176–5183. doi: 10.1210/endo.138.12.5579 . PMID   9389498.
  26. Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG (January 2003). "The myocardial protein S100A1 plays a role in the maintenance of normal gene expression in the adult heart". Molecular and Cellular Biochemistry. 242 (1–2): 27–33. doi:10.1023/A:1021148503861. PMID   12619862. S2CID   12957638.
  27. Remppis A, Greten T, Schäfer B, Hunziker P, Erne P, Katus H, et al. (11 October 1996). "Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1313 (3): 253–257. doi: 10.1016/0167-4889(96)00097-3 . PMID   8898862.
  28. Bennett M, Sweet W, Baicker-McKee S, Looney E, Karohl K, Mountis M, et al. (July 2014). "S100A1 in human heart failure: lack of recovery following left ventricular assist device support". Circulation: Heart Failure. 7 (4): 612–618. doi:10.1161/circheartfailure.113.000849. PMC   4102621 . PMID   24842913.
  29. Descamps B, Madeddu P, Emanueli C (4 January 2013). "S100A1: A novel and essential molecular component for postischemic angiogenesis". Circulation Research. 112 (1): 3–5. doi:10.1161/circresaha.112.281022. PMC   3616364 . PMID   23287450.
  30. Most P, Lerchenmüller C, Rengo G, Mahlmann A, Ritterhoff J, Rohde D, et al. (4 January 2013). "S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation". Circulation Research. 112 (1): 66–78. doi:10.1161/circresaha.112.275156. PMC   3760372 . PMID   23048072.
  31. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, et al. (December 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–676. doi: 10.1111/j.1755-148X.2008.00505.x . PMID   19067971. S2CID   24698373.
  32. Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D, et al. (December 2004). "Cardiac adenoviral S100A1 gene delivery rescues failing myocardium". The Journal of Clinical Investigation. 114 (11): 1550–1563. doi:10.1172/JCI21454. PMC   529280 . PMID   15578088.
  33. Pleger ST, Remppis A, Heidt B, Völkers M, Chuprun JK, Kuhn M, et al. (December 2005). "S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction". Molecular Therapy. 12 (6): 1120–1129. doi: 10.1016/j.ymthe.2005.08.002 . PMID   16168714.
  34. Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, et al. (September 2006). "Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction". Circulation. 114 (12): 1258–1268. doi: 10.1161/CIRCULATIONAHA.106.622415 . PMID   16952982.
  35. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W, et al. (May 2007). "Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue". Circulation. 115 (19): 2506–2515. doi: 10.1161/CIRCULATIONAHA.106.671701 . PMID   17470693.
  36. Remppis A, Pleger S, Most P, Lindenkamp J, Ehlermann P, Schweda C, et al. (April 2004). "S100A1 gene transfer: a strategy to strengthen engineered cardiac grafts". The Journal of Gene Medicine. 6 (4): 387–394. doi:10.1002/jgm.513. PMID   15079813. S2CID   30629576.
  37. Kiewitz R, Acklin C, Minder E, Huber P, Schäfer B, Heizmann C (11 August 2000). "S100A1, a new marker for acute myocardial ischemia". Biochemical and Biophysical Research Communications. 274 (3): 865–871. Bibcode:2000BBRC..274..865K. doi:10.1006/bbrc.2000.3229. PMID   10924368.
  38. Rohde D, Schön C, Boerries M, Didrihsone I, Ritterhoff J, Kubatzky K, et al. (15 May 2014). "S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Toll-like receptor 4". EMBO Molecular Medicine. 6 (6): 778–794. doi:10.15252/emmm.201303498. PMC   4203355 . PMID   24833748.
  39. Most P, Boerries M, Eicher C, Schweda C, Ehlermann P, Pleger S, et al. (28 November 2003). "Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2)". The Journal of Biological Chemistry. 278 (48): 48404–48412. doi: 10.1074/jbc.m308587200 . PMID   12960148.
  40. Matheis G, Abdel-Rahman U, Braun S, Wimmer-Greinecker G, Esmaili A, Seitz U, et al. (October 2000). "Uncontrolled reoxygenation by initiating cardiopulmonary bypass is associated with higher protein S100 in cyanotic versus acyanotic patients". The Thoracic and Cardiovascular Surgeon. 48 (5): 263–268. doi:10.1055/s-2000-7879. PMID   11100757. S2CID   260335126.
  41. Brett W, Mandinova A, Remppis A, Sauder U, Rüter F, Heizmann C, et al. (15 June 2001). "Translocation of S100A1(1) calcium binding protein during heart surgery". Biochemical and Biophysical Research Communications. 284 (3): 698–703. Bibcode:2001BBRC..284..698B. doi:10.1006/bbrc.2001.4996. PMID   11396958.
  42. Brinks H, Rohde D, Voelkers M, Qiu G, Pleger S, Herzog N, et al. (23 August 2011). "S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes". Journal of the American College of Cardiology. 58 (9): 966–973. doi:10.1016/j.jacc.2011.03.054. PMC   3919460 . PMID   21851887.
  43. Pleger S, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, et al. (20 July 2011). "Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model". Science Translational Medicine. 3 (92): 92ra64. doi:10.1126/scitranslmed.3002097. PMC   4095769 . PMID   21775667.
  44. Belmonte S, Margulies K, Blaxall B (23 August 2011). "S100A1: Another Step Toward Therapeutic Development for Heart Failure". Journal of the American College of Cardiology. 58 (9): 974–976. doi: 10.1016/j.jacc.2011.04.032 . PMID   21851888.
  45. Rohde D, Brinks H, Ritterhoff J, Qui G, Ren S, Most P (May 2011). "S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials". Journal of Molecular and Cellular Cardiology. 50 (5): 777–784. doi:10.1016/j.yjmcc.2010.08.012. PMID   20732326.
  46. Rohde D, Ritterhoff J, Voelkers M, Katus H, Parker T, Most P (October 2010). "S100A1: a multifaceted therapeutic target in cardiovascular disease". Journal of Cardiovascular Translational Research. 3 (5): 525–537. doi:10.1007/s12265-010-9211-9. PMC   2933808 . PMID   20645037.
  47. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger S, Voelkers M, et al. (October 2009). "S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy". Journal of Molecular and Cellular Cardiology. 47 (4): 445–455. doi:10.1016/j.yjmcc.2009.06.003. PMC   2739260 . PMID   19538970.
  48. Ritterhoff J, Most P (June 2012). "Targeting S100A1 in heart failure". Gene Therapy. 19 (6): 613–621. doi: 10.1038/gt.2012.8 . PMID   22336719. S2CID   22951165.
  49. Kairouz V, Lipskaia L, Hajjar R, Chemaly E (April 2012). "Molecular targets in heart failure gene therapy: current controversies and translational perspectives". Annals of the New York Academy of Sciences. 1254 (1): 42–50. Bibcode:2012NYASA1254...42K. doi:10.1111/j.1749-6632.2012.06520.x. PMC   3470446 . PMID   22548568.
  50. Zouein F, Booz G (2013). "AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling". F1000Prime Reports. 5: 27. doi: 10.12703/p5-27 . PMC   3732072 . PMID   23967378.
  51. Landar A, Caddell G, Chessher J, Zimmer DB (September 1996). "Identification of an S100A1/S100B target protein: phosphoglucomutase". Cell Calcium. 20 (3): 279–285. doi:10.1016/S0143-4160(96)90033-0. PMID   8894274.
  52. 1 2 Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–1178. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  53. Deloulme JC, Assard N, Mbele GO, Mangin C, Kuwano R, Baudier J (November 2000). "S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo". The Journal of Biological Chemistry. 275 (45): 35302–35310. doi: 10.1074/jbc.M003943200 . PMID   10913138.
  54. Yang Q, O'Hanlon D, Heizmann CW, Marks A (February 1999). "Demonstration of heterodimer formation between S100B and S100A6 in the yeast two-hybrid system and human melanoma". Experimental Cell Research. 246 (2): 501–509. doi:10.1006/excr.1998.4314. PMID   9925766.
  55. Wang G, Rudland PS, White MR, Barraclough R (April 2000). "Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1". The Journal of Biological Chemistry. 275 (15): 11141–11146. doi: 10.1074/jbc.275.15.11141 . PMID   10753920.
  56. Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J (May 2012). "Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel". The Journal of Biological Chemistry. 287 (20): 16645–16655. doi: 10.1074/jbc.M112.350686 . PMC   3351314 . PMID   22451665.
  57. Wright N, Prosser B, Varney K, Zimmer D, Schneider M, Weber D (26 September 2008). "S100A1 and calmodulin compete for the same binding site on ryanodine receptor". The Journal of Biological Chemistry. 283 (39): 26676–26683. doi: 10.1074/jbc.m804432200 . PMC   2546546 . PMID   18650434.
  58. Prosser B, Hernández-Ochoa E, Schneider M (October 2011). "S100A1 and calmodulin regulation of ryanodine receptor in striated muscle". Cell Calcium. 50 (4): 323–331. doi:10.1016/j.ceca.2011.06.001. PMC   3185186 . PMID   21784520.
  59. 1 2 Kiewitz R, Acklin C, Schäfer BW, Maco B, Uhrík B, Wuytack F, et al. (June 2003). "Ca2+ -dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+ -ATPase2a and phospholamban in the human heart". Biochemical and Biophysical Research Communications. 306 (2): 550–557. doi:10.1016/s0006-291x(03)00987-2. PMID   12804600.
  60. Most P, Boerries M, Eicher C, Schweda C, Völkers M, Wedel T, et al. (January 2005). "Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes". Journal of Cell Science. 118 (Pt 2): 421–431. doi:10.1242/jcs.01614. PMID   15654019. S2CID   33063596.
  61. Prosser B, Wright N, Hernãndez-Ochoa E, Varney K, Liu Y, Olojo R, et al. (22 February 2008). "S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling". The Journal of Biological Chemistry. 283 (8): 5046–5057. Bibcode:2008JBiCh.283.5046P. doi: 10.1074/jbc.m709231200 . PMC   4821168 . PMID   18089560.

Further reading