Sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming)

Last updated
Sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming)
Identifiers
EC no. 1.1.1.325
CAS no. 9059-48-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming) (EC 1.1.1.325) is an enzyme with systematic name L-threo-7,8-dihydrobiopterin:NADP+ oxidoreductase. [1] [2] This enzyme catalyses the following chemical reaction

(1) L-threo-7,8-dihydrobiopterin + NADP+ sepiapterin + NADPH + H+
(2) L-threo-tetrahydrobiopterin + 2 NADP+ 6-pyruvoyl-5,6,7,8-tetrahydropterin + 2 NADPH + 2 H+

This bacterial ( Chlorobium tepidum ) enzyme catalyses the final step in the de novo synthesis of tetrahydrobiopterin from GTP.

Related Research Articles

<span class="mw-page-title-main">Sepiapterin reductase</span>

Sepiapterin reductase is an enzyme that in humans is encoded by the SPR gene.

<span class="mw-page-title-main">6,7-dihydropteridine reductase</span> Class of enzymes

In enzymology, 6,7-dihydropteridine reductase (EC 1.5.1.34, also Dihydrobiopterin reductase) is an enzyme that catalyzes the chemical reaction

NADP-retinol dehydrogenase (EC 1.1.1.300, all-trans retinal reductase, all-trans-retinol dehydrogenase, NADP(H)-dependent retinol dehydrogenase/reductase, RDH11, RDH12, RDH13, RDH14, retinol dehydrogenase 12, retinol dehydrogenase 14, retinol dehydrogenase (NADP+), RalR1, PSDR1) is an enzyme with systematic name retinol:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

D-arabinitol dehydrogenase (NADP+) (EC 1.1.1.287, NADP+-dependent D-arabitol dehydrogenase, ARD1p, D-arabitol dehydrogenase 1) is an enzyme with systematic name D-arabinitol:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

Sulfoacetaldehyde reductase (EC 1.1.1.313, ISFD) is an enzyme with systematic name isethionate:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

Perakine reductase (EC 1.1.1.317) is an enzyme with systematic name raucaffrinoline:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

Very-long-chain 3-oxoacyl-CoA reductase (EC 1.1.1.330, very-long-chain 3-ketoacyl-CoA reductase, very-long-chain beta-ketoacyl-CoA reductase, KCR (gene), IFA38 (gene)) is an enzyme with systematic name (3R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

Malonyl CoA reductase (malonate semialdehyde-forming) (EC 1.2.1.75, NADP-dependent malonyl CoA reductase, malonyl CoA reductase (NADP)) is an enzyme with systematic name malonate semialdehyde:NADP+ oxidoreductase (malonate semialdehyde-forming). This enzyme catalyse the following chemical reaction

Succinate-semialdehyde dehydrogenase (acylating) (EC 1.2.1.76, succinyl-coA reductase, coenzyme-A-dependent succinate-semialdehyde dehydrogenase) is an enzyme with systematic name succinate semialdehyde:NADP+ oxidoreductase (CoA-acylating). This enzyme catalyses the following chemical reaction

Alcohol-forming fatty acyl-CoA reductase (EC 1.2.1.84, FAR (gene)) is an enzyme with systematic name long-chain acyl-CoA:NADPH reductase. This enzyme catalyses the following chemical reaction

Acrylyl-CoA reductase (NADPH) (EC 1.3.1.84) is an enzyme with systematic name propanoyl-CoA:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

Polyprenol reductase (EC 1.3.1.94, SRD5A3 (gene), DFG10 (gene)) is an enzyme with systematic name ditrans,polycis-dolichol:NADP+ 2,3-oxidoreductase. This enzyme catalyses the following chemical reaction

Tyrosine N-monooxygenase (EC 1.14.13.41, tyrosine N-hydroxylase, CYP79A1) is an enzyme with systematic name L-tyrosine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Monocyclic monoterpene ketone monooxygenase (EC 1.14.13.105, 1-hydroxy-2-oxolimonene 1,2-monooxygenase, dihydrocarvone 1,2-monooxygenase, MMKMO) is an enzyme with systematic name (-)-menthone,NADPH:oxygen oxidoreductase. This enzyme catalyses the following chemical reaction

Epi-isozizaene 5-monooxygenase (EC 1.14.13.106, CYP170A1) is an enzyme with systematic name (+)-epi-isozizaene,NADPH:oxygen oxidoreductase (5-hydroxylating). This enzyme catalyses the following chemical reaction

Isoleucine N-monooxygenase (EC 1.14.13.117, CYP79D3, CYP79D4) is an enzyme with systematic name L-isoleucine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Valine N-monooxygenase (EC 1.14.13.118, CYP79D1, CYP79D2) is an enzyme with systematic name L-valine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Tryptophan N-monooxygenase (EC 1.14.13.125, tryptophan N-hydroxylase, CYP79B1, CYP79B2, CYP79B3) is an enzyme with systematic name L-tryptophan,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction

Ferric-chelate reductase (NADPH) (EC 1.16.1.9, ferric chelate reductase, iron chelate reductase, NADPH:Fe3+-EDTA reductase, NADPH-dependent ferric reductase, yqjH (gene)) is an enzyme with systematic name Fe(II):NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Chlorophyllide</span> Chemical compound

Chlorophyllide a and Chlorophyllide b are the biosynthetic precursors of chlorophyll a and chlorophyll b respectively. Their propionic acid groups are converted to phytyl esters by the enzyme chlorophyll synthase in the final step of the pathway. Thus the main interest in these chemical compounds has been in the study of chlorophyll biosynthesis in plants, algae and cyanobacteria. Chlorophyllide a is also an intermediate in the biosynthesis of bacteriochlorophylls.

References

  1. Cho SH, Na JU, Youn H, Hwang CS, Lee CH, Kang SO (June 1999). "Sepiapterin reductase producing L-threo-dihydrobiopterin from Chlorobium tepidum". The Biochemical Journal. 340 ( Pt 2): 497–503. doi:10.1042/0264-6021:3400497. PMC   1220277 . PMID   10333495.
  2. Supangat S, Choi YK, Park YS, Son D, Han CD, Lee KH (February 2005). "Expression, purification, crystallization and preliminary X-ray analysis of sepiapterin reductase from Chlorobium tepidum". Acta Crystallographica Section F. 61 (Pt 2): 202–4. doi:10.1107/S174430910403444X. PMC   1952253 . PMID   16510994.