Sherwood Sandstone Group

Last updated
Sherwood Sandstone Group
Stratigraphic range: Induan–Anisian
View of South Head from the coastal path north of Fleswick Beach - geograph.org.uk - 88738.jpg
St Bees Sandstone, St Bees South Head, Cumbria
Type Group
Unit of New Red Sandstone Supergroup
Sub-units Bromsgrove Sandstone, Wildmoor Sandstone, Kidderminster, Chester, Kinnerton Sandstone, Tarporley Siltstone, Helsby Sandstone, Upper Mottled Sandstone and Lower Mottled Sandstone formations
Underlies Mercia Mudstone Group
Overlies Roxby Formation, Cumbrian Coast Group and others
Thicknessover 1500m
Lithology
Primary sandstone
Other mudstone, siltstone, conglomerate
Location
Country England
Extentwidespread
Type section
Named for Sherwood Forest

The Sherwood Sandstone Group is a Triassic lithostratigraphic group (a sequence of rock strata) which is widespread in Britain, especially in the English Midlands. The name is derived from Sherwood Forest in Nottinghamshire which is underlain by rocks of this age. [1] It has economic importance as the reservoir of the Morecambe Bay gas field, [2] the second largest gas field in the UK. [3]

Contents

Geographical extent

These rocks are found in northwest England as far north as Carlisle (and extending just into Scotland around Annan and Gretna) and in the Vale of Eden and then extending down the Cumbrian coast into Lancashire and Cheshire. They are mostly obscured by superficial deposits but the highest coastal cliffs in northwest England at St Bees Head are formed in the St Bees Sandstone, the lowermost formation within the group. [4]

In the northeast they extend from Hartlepool south through the Vale of Mowbray and the Vale of York, then south through Nottinghamshire into the English Midlands, though are very largely concealed by superficial sediments. They occur widely through the Midlands (though usually concealed) and notably in an outlier at Leek, Staffordshire. They extend south to the Severn Estuary and beyond there through Somerset to Budleigh Salterton on the coast of East Devon.

There are further occurrences in Northern Ireland north and east of Limavady, east of Cookstown, between Dungannon and Armagh and along the Lagan Valley beneath Belfast and Newtownards and on the Antrim coast. [5]

The Group comprises different sequences in each of the various basins in which it is developed as described below.

Cheshire Basin rock succession

The sequence is most thickly developed in the Cheshire Basin, which also extends into north Shropshire. It comprises the following formations:

Helsby Sandstone Formation

The Helsby Sandstone Formation (named from the Cheshire village of Helsby where the type section is exposed at Helsby Hill) comprises around 250m thickness of sandstone with conglomerate and siltstone which occurs across the Cheshire Basin. Older literature includes it as part of the Lower Keuper Sandstone. [6] It is often divided into an upper Frodsham Member and a lower Delamere Member. [7] Faulted blocks of these rocks are largely responsible for the prominent west facing escarpment of the Mid Cheshire Ridge and the Helsby Sandstone is exposed in numerous localities here, southwards from Runcorn through Frodsham to Utkinton, spectacularly at the outlier of Beeston Castle hill and lastly within the Peckforton Hills. [8]

Wilmslow Sandstone Formation

The Wilmslow Sandstone Formation (named from the town of Wilmslow in Cheshire) comprises up to 900m thickness of early Triassic sandstones with occasional siltstones. It was earlier known as the Upper Mottled Sandstone. [9] In Wirral, the 60m thick Thurstaston Sandstone Member and the 2m thick Thurstaston Hard Sandstone Bed are distinguished at the top of the sequence. [7]

Chester Formation

The Chester Formation (named from the city of Chester) comprises sandstones with some conglomerates and siltstones of early Triassic age. It ranges from less than 90m to over 220m in thickness. It has been known in the past as the Bunter Pebble Beds and the Chester Pebble Beds Formation. There are a couple of reference sections for this sequence in the vicinity of Chester. [10]

Kinnerton Sandstone Formation

The Kinnerton Sandstone Formation (named from the twin villages of Higher and Lower Kinnerton on the England/Wales border west of Chester) is a sequence which ranges from 0m to over 150m thickness of largely aeolian sandstones of early Triassic age. It was formerly known as the Lower Mottled Sandstone. [11]

English Midlands rock succession

Bromsgrove Sandstone Formation

The Bromsgrove Sandstone Formation (named from the town of Bromsgrove in Worcestershire) is early Triassic to Anisian in age and comprises variously coloured sandstones whose bases are frequently conglomeratic, together with mudstones and siltstones. The thickness of the formation is variable but reaches around 500m in the Worcester area. It is often encountered in older literature as the Lower Keuper Sandstone. [12] The formation includes the Shepshed Sandstone Member. [13]

Wildmoor Sandstone Formation

The Wildmoor Sandstone Formation (named from the Worcestershire locality of Wildmoor, north of Bromsgrove) is a 0 - 284m thick sequence of sandstones formerly known as the Upper Mottled Sandstone or Wildmoor Beds. It also includes some mudstones and siltstones. [14]

Kidderminster Formation

The Kidderminster Formation (named from the Worcestershire town of Kidderminster) is a 0 - 200m thick sequence of conglomerates and sandstones previously known as either the Bunter Pebble Beds or the Kidderminster Conglomerate Formation. [15]

Polesworth Formation

The Polesworth Formation (named from the Warwickshire village of Polesworth) is of ?Olenekian to Anisian age.

Moira Formation

The Moira Formation (named from the Leicestershire village of Moira) is of Induan/Olenekian age. Also encountered as the Hopwas or Moira Breccia. [16]

Lenton Sandstone Formation

The Lenton Sandstone Formation (named from the Nottingham suburb of Lenton) is of Induan/Olenekian age.

Stafford Basin rock succession

The Stafford Basin includes the Kibbleston Formation (named from the Staffordshire locality of Kibbleston) which is underlain by the Wildmoor Formation which is in turn underlain by the Kidderminster Formation. [17]

Needwood Basin rock succession

The rock succession in the Needwood Basin includes the Hollington Formation (named from the Staffordshire locality of Hollington) which is underlain by the Hawksmoor Formation (named from the Staffordshire locality of Hawksmoor) which includes the Hulme Member, a conglomerate and which is in turn underlain by the Huntley Formation (named from the Staffordshire locality of Huntley). They are all of Scythian age. [17] [18]

Cumbria rock succession

On the Cumbrian coast the Group comprises the Calder Sandstone Formation and the underlying St Bees Sandstone Formation. The former is around 500m thick and includes sandstones of both aeolian and fluviatile origin. The latter is between 400 and 600m thick and includes some siltstone and claystone beds. It overlies the varied lithologies of the Permian age Cumbrian Coastal Group. [19] The Kirklinton Sandstone Formation in places overlies the Calder Sandstone Formation in the Carlisle and Vale of Eden basins of north and east Cumbria. [20] A sandstone which underlies Sellafield and Drigg is known as the Sellafield Member and is assigned to the Helsby Sandstone Formation. [21]

Southwest England rock succession

The group is represented in Somerset and east Devon by the Otterton Sandstone and the underlying Budleigh Salterton Pebble Beds formations,. [22]

Related Research Articles

<span class="mw-page-title-main">Old Red Sandstone</span> Assemblage of rocks in the North Atlantic region

The Old Red Sandstone is an assemblage of rocks in the North Atlantic region largely of Devonian age. It extends in the east across Great Britain, Ireland and Norway, and in the west along the eastern seaboard of North America. It also extends northwards into Greenland and Svalbard. These areas were a part of the ancient continent of Euramerica/Laurussia. In Britain it is a lithostratigraphic unit to which stratigraphers accord supergroup status and which is of considerable importance to early paleontology. For convenience the short version of the term, ORS is often used in literature on the subject. The term was coined to distinguish the sequence from the younger New Red Sandstone which also occurs widely throughout Britain.

The geology of Shropshire is very diverse with a large number of periods being represented at outcrop. The bedrock consists principally of sedimentary rocks of Palaeozoic and Mesozoic age, surrounding restricted areas of Precambrian metasedimentary and metavolcanic rocks. The county hosts in its Quaternary deposits and landforms, a significant record of recent glaciation. The exploitation of the Coal Measures and other Carboniferous age strata in the Ironbridge area made it one of the birthplaces of the Industrial Revolution. There is also a large amount of mineral wealth in the county, including lead and baryte. Quarrying is still active, with limestone for cement manufacture and concrete aggregate, sandstone, greywacke and dolerite for road aggregate, and sand and gravel for aggregate and drainage filters. Groundwater is an equally important economic resource.

The Lias Group or Lias is a lithostratigraphic unit found in a large area of western Europe, including the British Isles, the North Sea, the Low Countries and the north of Germany. It consists of marine limestones, shales, marls and clays.

<span class="mw-page-title-main">Mercia Mudstone Group</span> Early Triassic lithostratigraphic group

The Mercia Mudstone Group is an early Triassic lithostratigraphic group which is widespread in Britain, especially in the English Midlands—the name is derived from the ancient kingdom of Mercia which corresponds to that area. It is frequently encountered in older literature as the Keuper Marl or Keuper Marl Series.

The Coal Measures Group is a lithostratigraphical term coined to refer to the coal-bearing succession of rock strata which occur in the United Kingdom within the Westphalian Stage of the Carboniferous Period. The succession was previously referred to as the 'Productive Coal Measures'. Other than in Northern Ireland the term is now obsolete in formal use and is replaced by the Pennine Coal Measures Group, Scottish Coal Measures Group and the South Wales Coal Measures Group for the three distinct depositional provinces of the British mainland.

<span class="mw-page-title-main">Llanbedrog Volcanic Group</span>

The Llanbedrog Volcanic Group is an Ordovician lithostratigraphic group in northwest Wales. The name is derived from the village of Llanbedrog on the Llyn Peninsula where the strata are exposed.

<span class="mw-page-title-main">Snowdon Volcanic Group</span>

The Snowdon Volcanic Group is an Ordovician lithostratigraphic group in Snowdonia, north-west Wales. The name is derived from Snowdon, the highest peak in Wales where it outcrops. This assemblage of rocks has also been referred to as the Snowdon Volcanic Series.

<span class="mw-page-title-main">Harlech Grits Group</span>

The Harlech Grits Group is a lower to middle Cambrian lithostratigraphic group in northwest Wales. The name is derived from the town of Harlech in Gwynedd.

<span class="mw-page-title-main">Mawddach Group</span> Geological group in Gwynedd, Wales

The Mawddach Group is a middle to upper Cambrian lithostratigraphic group in Gwynedd, Wales. The name is derived from the river known as the Afon Mawddach.

<span class="mw-page-title-main">Exeter Group</span> Group of rock formations

The Exeter Group is a Permian lithostratigraphic group which occurs through East Devon in southwest England. The name is derived from the city of Exeter in Devon which is partly underlain by rocks of this age.

<span class="mw-page-title-main">Aylesbeare Mudstone Group</span> Triassic lithostratigraphic group in southwest England

The Aylesbeare Mudstone Group is an early Triassic lithostratigraphic group in southwest England. The name is derived from the village of Aylesbeare in east Devon. The Group comprises the Littleham Mudstone Formation, the Exmouth Mudstone and Sandstone Formation and the underlying Clyst St Lawrence Formation. The strata are exposed on the coast between Exmouth and Budleigh Salterton where the type section is defined. The rocks of the Aylesbeare Mudstone Group have also previously been known as the Aylesbeare Group and the Aylesbeare Mudstone Formation.

The geology of Lancashire in northwest England consists in the main of Carboniferous age rocks but with Triassic sandstones and mudstones at or near the surface of the lowlands bordering the Irish Sea though these are largely obscured by Quaternary deposits.

The geology of Merseyside in northwest England largely consists of a faulted sequence of Carboniferous Coal Measures rocks overlain in the west by younger Triassic and Permian age sandstones and mudstones. Glaciation during the present Quaternary Period has left widespread glacial till as well as erosional landforms. Other post-glacial superficial deposits such as river and estuarine alluvium, peat and blown sand are abundant.

The Pennine Coal Measures Group is a lithostratigraphical term referring to the coal-bearing succession of rock strata which occur in the United Kingdom within the Westphalian Stage of the Carboniferous Period. In formal use, the term replaces the Coal Measures Group as applied to the succession of coal-bearing strata within the Pennine Basin which includes all of the coalfields of northern England and the English Midlands. It includes the largely concealed Canonbie Coalfield of southern Scotland and the coalfields of northeast Wales and the minor Anglesey coalfield.

The Cosheston Group is an early Devonian lithostratigraphic group in west Wales. The name is derived from the village of Cosheston in south Pembrokeshire. The Group comprises the Llanstadwell, Burton Cliff, Mill Bay, Lawrenny Cliff and New Shipping formations. The strata are exposed in the Milford Haven area of southern Pembrokeshire where several partial type sections are defined. The outcrop extends around the northern and southern shores of the Haven. It is bounded to the north by the Benton Fault between the villages of Rosemarket and Lawrenny, and extends east to New Shipping and west almost to the town of Milford Haven itself. The rocks of this group have also previously been known as the Cosheston Beds.

<span class="mw-page-title-main">Exmoor Group</span>

The Exmoor Group is a late Devonian to early Carboniferous lithostratigraphic group in southwest England whose outcrop extends from Croyde in north Devon east across Exmoor to Minehead in west Somerset. The group comprises the following formations the:

The Worcester Basin or Worcester Graben is a sedimentary basin in central England, filled with mainly Permian and Triassic rocks. It trends roughly north-south and lies between the East Malverns Fault in the west and the Inkberrow Fault in the east. It forms part of a series of Permo-Triassic basins that stretch north-south across England, including the Cheshire Basin, Stafford Basin and the East Irish Sea Basin. These basins resulted from a regional rifting event that affected parts of North-West Europe, eastern North America and East Greenland.

The geology of Exmoor National Park in south-west England contributes significantly to the character of Exmoor, a landscape which was designated as a national park in 1954. The bedrock of the area consists almost wholly of a suite of sedimentary rocks deposited during the Devonian, a period named for the English county of Devon in which the western half of the park sits. The eastern part lies within Somerset and it is within this part of the park that limited outcrops of Triassic and Jurassic age rocks are to be found.

The geology of the Peak District National Park in England is dominated by a thick succession of faulted and folded sedimentary rocks of Carboniferous age. The Peak District is often divided into a southerly White Peak where Carboniferous Limestone outcrops and a northerly Dark Peak where the overlying succession of sandstones and mudstones dominate the landscape. The scarp and dip slope landscape which characterises the Dark Peak also extends along the eastern and western margins of the park. Although older rocks are present at depth, the oldest rocks which are to be found at the surface in the national park are dolomitic limestones of the Woo Dale Limestone Formation seen where Woo Dale enters Wye Dale east of Buxton.

A feature of the geology of England, the Stafford Basin extends beneath much of the Midlands county of Staffordshire. It is a depositional basin which was initiated during the Permian period and continued to receive sediment during the Triassic period and probably thereafter. Part of a more extensive set of linked basins, it connects with the Cheshire Basin to the northwest, the Worcester Basin via the Bratch Graben to the south and the Needwood Basin to the east. It is flanked in part to the west by the Coalbrookdale Coalfield and to the east by the South Staffordshire Coalfield. The sedimentary sequence, principally sandstones and mudstones, within the basin is continuous with that of the adjoining basins in the rift complex. Deposition of the Chester Formation for example is ascribed to a river flowing north from the Worcester Basin through the Stafford Basin and on into the Cheshire and East Irish Sea basins during the early Triassic. In contrast the Bridgnorth Sandstone Formation of this area is of aeolian origin, the equivalent of the Collyhurst Sandstone of the Cheshire Basin.

References

  1. http://www.bgs.ac.uk/Lexicon/lexicon.cfm?pub=SSG (BGS on-line lexicon of rock units)
  2. Stuart, I. A.; Cowan, G. (1 January 1991), "The South Morecambe Field, Blocks 110/2a, 110/3a, 110/8a, UK East Irish Sea", Memoirs of the Geological Society, London, 14: 527–541, doi:10.1144/GSL.MEM.1991.014.01.66, S2CID   140723122
  3. "Oil and Gas from the Western Basins". United Kingdom Offshore Oil and Gas Industry Association. 2012. Archived from the original on 2013-06-28.
  4. British Geological Survey 1;50,000 scale geological map sheet (England and Wales series) no 28 Whitehaven
  5. British Geological Survey 1:625,000 scale Bedrock geology UK South & UK North sheets
  6. "BGS Lexicon of Named Rock Units - Result Details".
  7. 1 2 British Geological Survey 1:50,000 scale geological map sheet (England and Wales series) 96 Liverpool
  8. British Geological Survey 1:50,000 scale geological map sheets (England and Wales series) 97 Runcorn, 109 Chester and 122 Nantwich
  9. "BGS Lexicon of Named Rock Units - Result Details".
  10. "BGS Lexicon of Named Rock Units - Result Details".
  11. "BGS Lexicon of Named Rock Units - Result Details".
  12. "BGS Lexicon of Named Rock Units - Result Details".
  13. British Geological Survey 1:50,000 scale geological map sheet (England and Wales series) 141 Loughborough
  14. "BGS Lexicon of Named Rock Units - Result Details".
  15. "BGS Lexicon of Named Rock Units - Result Details".
  16. British Geological Survey 1:50,000 scale geological map sheet (England and Wales series) 155 Coalville
  17. 1 2 British Geological Survey 1:50,000 scale geological map sheet (England and Wales series) 123 Stoke-on-Trent
  18. British Geological Survey 1:50,000 scale geological map sheets (England and Wales series) 124 Ashbourne
  19. British Geological Survey 1:50,000 scale geological map sheet (England and Wales series) no 37 Gosforth
  20. Stone P. et al 2010. British Regional Geology: Northern England (5th edn) Keyworth, Nottingham British Geological Survey ISBN   978-0-85272-652-5
  21. "BGS Lexicon of Named Rocks Units". British Geological Survey. Retrieved 19 January 2019.
  22. British Geological Survey 1:50,000 scale geological map (England) sheets 325, 326, 327 Exeter, Sidmouth & Bridport