Spaceflight radiation carcinogenesis

Last updated
The Phantom Torso, as seen here in the Destiny laboratory on the International Space Station (ISS), is designed to measure the effects of radiation on organs inside the body by using a torso that is similar to those used to train radiologists on Earth. The torso is equivalent in height and weight to an average adult male. It contains radiation detectors that will measure, in real-time, how much radiation the brain, thyroid, stomach, colon, and heart and lung area receive on a daily basis. The data will be used to determine how the body reacts to and shields its internal organs from radiation, which will be important for longer duration space flights. Iss002e5952.jpg
The Phantom Torso, as seen here in the Destiny laboratory on the International Space Station (ISS), is designed to measure the effects of radiation on organs inside the body by using a torso that is similar to those used to train radiologists on Earth. The torso is equivalent in height and weight to an average adult male. It contains radiation detectors that will measure, in real-time, how much radiation the brain, thyroid, stomach, colon, and heart and lung area receive on a daily basis. The data will be used to determine how the body reacts to and shields its internal organs from radiation, which will be important for longer duration space flights.

Astronauts are exposed to approximately 50-2,000 millisieverts (mSv) while on six-month-duration missions to the International Space Station (ISS), the Moon and beyond. [1] [2] [ failed verification ] The risk of cancer caused by ionizing radiation is well documented at radiation doses beginning at 100mSv and above. [1] [3] [4]

Contents

Related radiological effect studies have shown that survivors of the atomic bomb explosions in Hiroshima and Nagasaki, nuclear reactor workers and patients who have undergone therapeutic radiation treatments have received low-linear energy transfer (LET) radiation (x-rays and gamma rays) doses in the same 50-2,000 mSv range. [5]

Composition of space radiation

While in space, astronauts are exposed to radiation which is mostly composed of high-energy protons, helium nuclei (alpha particles), and high-atomic-number ions (HZE ions), as well as secondary radiation from nuclear reactions from spacecraft parts or tissue. [6]

The ionization patterns in molecules, cells, tissues and the resulting biological effects are distinct from typical terrestrial radiation (x-rays and gamma rays, which are low-LET radiation). Galactic cosmic rays (GCRs) from outside the Milky Way galaxy consist mostly of highly energetic protons with a small component of HZE ions. [6]

Prominent HZE ions:

GCR energy spectra peaks (with median energy peaks up to 1,000 MeV/amu) and nuclei (energies up to 10,000 MeV/amu) are important contributors to the dose equivalent. [6] [7]

Uncertainties in cancer projections

One of the main roadblocks to interplanetary travel is the risk of cancer caused by radiation exposure. The largest contributors to this roadblock are: (1) The large uncertainties associated with cancer risk estimates, (2) The unavailability of simple and effective countermeasures and (3) The inability to determine the effectiveness of countermeasures. [6] Operational parameters that need to be optimized to help mitigate these risks include: [6]

Major uncertainties [6]

Minor uncertainties [6]

Quantitative methods have been developed to propagate uncertainties that contribute to cancer risk estimates. The contribution of microgravity effects on space radiation has not yet been estimated, but it is expected to be small. The effects of changes in oxygen levels or in immune dysfunction on cancer risks are largely unknown and are of great concern during space flight. [6]

Types of cancer caused by radiation exposure

Studies are being conducted on populations accidentally exposed to radiation (such as Chernobyl, production sites, and Hiroshima and Nagasaki). These studies show strong evidence for cancer morbidity as well as mortality risks at more than 12 tissue sites. The largest risks for adults who have been studied include several types of leukemia, including myeloid leukemia [8] and acute lymphatic lymphoma [8] as well as tumors of the lung, breast, stomach, colon, bladder and liver. Inter-sex variations are very likely due to the differences in the natural incidence of cancer in males and females. Another variable is the additional risk for cancer of the breast, ovaries and lungs in females. [9] There is also evidence of a declining risk of cancer caused by radiation with increasing age, but the magnitude of this reduction above the age of 30 is uncertain. [6]

It is unknown whether high-LET radiation could cause the same types of tumors as low-LET radiation, but differences should be expected. [8]

The ratio of a dose of high-LET radiation to a dose of x-rays or gamma rays that produce the same biological effect are called relative biological effectiveness (RBE) factors. The types of tumors in humans who are exposed to space radiation will be different from those who are exposed to low-LET radiation. This is evidenced by a study that observed mice with neutrons and have RBEs that vary with the tissue type and strain. [8]

Measured rate of cancer among astronauts

The measured change rate of cancer is restricted by limited statistics. A study published in Scientific Reports looked over 301 U.S. astronauts and 117 Soviet and Russian cosmonauts, and found no measurable increase in cancer mortality compared to the general population, as reported by LiveScience. [10] [11]

An earlier 1998 study came to similar conclusions, with no statistically significant increase in cancer among astronauts compared to the reference group. [12]

Approaches for setting acceptable risk levels

The various approaches to setting acceptable levels of radiation risk are summarized below: [13]

Comparison of radiation doses - includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011 - 2013). PIA17601-Comparisons-RadiationExposure-MarsTrip-20131209.png
Comparison of radiation doses - includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011 - 2013).

NCRP Report No. 153 provides a more recent review of cancer and other radiation risks. [18] This report also identifies and describes the information needed to make radiation protection recommendations beyond LEO, contains a comprehensive summary of the current body of evidence for radiation-induced health risks and also makes recommendations on areas requiring future experimentation. [13]

Current permissible exposure limits

Career cancer risk limits

Astronauts' radiation exposure limit is not to exceed 3% of the risk of exposure-induced death (REID) from fatal cancer over their career. It is NASA's policy to ensure a 95% confidence level (CL) that this limit is not exceeded. These limits are applicable to all missions in low Earth orbit (LEO) as well as lunar missions that are less than 180 days in duration. [19] In the United States, the legal occupational exposure limits for adult workers is set at an effective dose of 50 mSv annually. [20]

Cancer risk to dose relationship

The relationship between radiation exposure and risk is both age- and sex-specific due to latency effects and differences in tissue types, sensitivities, and life spans between sexes. These relationships are estimated using the methods that are recommended by the NCRP [9] and more recent radiation epidemiology information [1] [19] [21]

The principle of As Low As Reasonably Achievable

The as low as reasonably achievable (ALARA) principle is a legal requirement intended to ensure astronaut safety. An important function of ALARA is to ensure that astronauts do not approach radiation limits and that such limits are not considered as "tolerance values." ALARA is especially important for space missions in view of the large uncertainties in cancer and other risk projection models. Mission programs and terrestrial occupational procedures resulting in radiation exposures to astronauts are required to find cost-effective approaches to implement ALARA. [19]

Evaluating career limits

Organ (T)Tissue weighting factor (wT)
Gonads0.20
Bone Marrow (red)0.12
Colon0.12
Lung0.12
Stomach0.12
Bladder0.05
Breast0.05
Liver0.05
Esophagus0.05
Thyroid0.05
Skin0.01
Bone Surface0.01
Remainder*0.05
*Adrenals, brain, upper intestine, small intestine,
kidney, muscle, pancreas, spleen, thymus and uterus.

The risk of cancer is calculated by using radiation dosimetry and physics methods. [19]

For the purpose of determining radiation exposure limits at NASA, the probability of fatal cancer is calculated as shown below:

  1. The body is divided into a set of sensitive tissues, and each tissue, T, is assigned a weight, wT, according to its estimated contribution to cancer risk. [19]
  2. The absorbed dose, Dγ, that is delivered to each tissue is determined from measured dosimetry. For the purpose of estimating radiation risk to an organ, the quantity characterizing the ionization density is the LET (keV/μm). [19]
  3. For a given interval of LET, between L and ΔL, the dose-equivalent risk (in units of sievert) to a tissue, T, Hγ(L) is calculated as

    where the quality factor, Q(L), is obtained according to the International Commission on Radiological Protection (ICRP). [19]
  4. The average risk to a tissue, T, due to all types of radiation contributing to the dose is given by [19]

    or, since , where Fγ(L) is the fluence of particles with LET=L, traversing the organ,
  5. The effective dose is used as a summation over radiation type and tissue using the tissue weighting factors, wγ [19]
  6. For a mission of duration t, the effective dose will be a function of time, E(t), and the effective dose for mission i will be [19]
  7. The effective dose is used to scale the mortality rate for radiation-induced death from the Japanese survivor data, applying the average of the multiplicative and additive transfer models for solid cancers and the additive transfer model for leukemia by applying life-table methodologies that are based on U.S. population data for background cancer and all causes of death mortality rates. A dose-dose rate effectiveness factor (DDREF) of 2 is assumed. [19]

Evaluating cumulative radiation risks

The cumulative cancer fatality risk (%REID) to an astronaut for occupational radiation exposures, N, is found by applying life-table methodologies that can be approximated at small values of %REID by summing over the tissue-weighted effective dose, Ei, as

where R0 are the age- and sex- specific radiation mortality rates per unit dose. [19]

For organ dose calculations, NASA uses the model of Billings et al. [22] to represent the self-shielding of the human body in a water-equivalent mass approximation. Consideration of the orientation of the human body relative to vehicle shielding should be made if it is known, especially for SPEs [23]

Confidence levels for career cancer risks are evaluated using methods that are specified by the NPRC in Report No. 126. [19] These levels were modified to account for the uncertainty in quality factors and space dosimetry. [1] [19] [24]

The uncertainties that were considered in evaluating the 95% confidence levels are the uncertainties in:

The so-called "unknown uncertainties" from the NCRP report No. 126 [25] are ignored by NASA.

Models of cancer risks and uncertainties

Life-table methodology

The double-detriment life-table approach is what is recommended by the NPRC [9] to measure radiation cancer mortality risks. The age-specific mortality of a population is followed over its entire life span with competing risks from radiation and all other causes of death described. [26] [27]

For a homogenous population receiving an effective dose E at age aE, the probability of dying in the age-interval from a to a+1 is described by the background mortality-rate for all causes of death, M(a), and the radiation cancer mortality rate, m(E,aE,a), as: [27]

The survival probability to age, a, following an exposure, E at age aE, is: [27]

The excessive lifetime risk (ELR - the increased probability that an exposed individual will die from cancer) is defined by the difference in the conditional survival probabilities for the exposed and the unexposed groups as: [27]

A minimum latency-time of 10 years is often used for low-LET radiation. [9] Alternative assumptions should be considered for high-LET radiation. The REID (the lifetime risk that an individual in the population will die from cancer caused by radiation exposure) is defined by: [27]

Generally, the value of the REID exceeds the value of the ELR by 10-20%.

The average loss of life-expectancy, LLE, in the population is defined by: [27]

The loss of life-expectancy among exposure-induced-deaths (LLE-REID) is defined by: [27] [28]

Uncertainties in low-LET epidemiology data

The low-LET mortality rate per sievert, mi is written

where m0 is the baseline mortality rate per sievert and xα are quantiles (random variables) whose values are sampled from associated probability distribution functions (PDFs), P(Xa). [29]

NCRP, in Report No. 126, defines the following subjective PDFs, P(Xa), for each factor that contributes to the acute low-LET risk projection: [29] [30]

  1. Pdosimetry is the random and systematic errors in the estimation of the doses received by atomic-bomb blast survivors.
  2. Pstatistical is the distribution in uncertainty in the point estimate of the risk coefficient, r0.
  3. Pbias is any bias resulting for over- or under-reporting cancer deaths.
  4. Ptransfer is the uncertainty in the transfer of cancer risk following radiation exposure from the Japanese population to the U.S. population.
  5. PDr is the uncertainty in the knowledge of the extrapolation of risks to low dose and dose-rates, which are embodied in the DDREF.

Risk in context of exploration mission operational scenarios

The accuracy of galactic cosmic ray environmental models, transport codes and nuclear interaction cross sections allow NASA to predict space environments and organ exposure that may be encountered on long-duration space missions. The lack of knowledge of the biological effects of radiation exposure raise major questions about risk prediction. [31]

The cancer risk projection for space missions is found by [31]

where represents the folding of predictions of tissue-weighted LET spectra behind spacecraft shielding with the radiation mortality rate to form a rate for trial J.

Alternatively, particle-specific energy spectra, Fj(E), for each ion, j, can be used [31]

.

The result of either of these equations is inserted into the expression for the REID. [31]

Related probability distribution functions (PDFs) are grouped together into a combined probability distribution function, Pcmb(x). These PDFs are related to the risk coefficient of the normal form (dosimetry, bias and statistical uncertainties). After a sufficient number of trials have been completed (approximately 105), the results for the REID estimated are binned and the median values and confidence intervals are found. [31]

The chi-squared (χ2) test is used for determining whether two separate PDFs are significantly different (denoted p1(Ri) and p2(Ri), respectively). Each p(Ri) follows a Poisson distribution with variance . [31]

The χ2 test for n-degrees of freedom characterizing the dispersion between the two distributions is [31]

.

The probability, P(ņχ2), that the two distributions are the same is calculated once χ2 is determined. [31]

Radiation carcinogenesis mortality rates

Age-and sex-dependent mortality rare per unit dose, multiplied by the radiation quality factor and reduced by the DDREF is used for projecting lifetime cancer fatality risks. Acute gamma ray exposures are estimated. [9] The additivity of effects of each component in a radiation field is also assumed.

Rates are approximated using data gathered from Japanese atomic bomb survivors. There are two different models that are considered when transferring risk from Japanese to U.S. populations.

The NCRP recommends a mixture model to be used that contains fractional contributions from both methods. [9]

The radiation mortality rate is defined as:

Where:

Biological and physical countermeasures

Identifying effective countermeasures that reduce the risk of biological damage is still a long-term goal for space researchers. These countermeasures are probably not needed for extended duration lunar missions, [3] but will be needed for other long-duration missions to Mars and beyond. [31] On 31 May 2013, NASA scientists reported that a possible human mission to Mars may involve a great radiation risk based on the amount of energetic particle radiation detected by the RAD on the Mars Science Laboratory while traveling from the Earth to Mars in 2011-2012. [14] [15] [16] [17]

There are three fundamental ways to reduce exposure to ionizing radiation: [31]

Shielding is a plausible option, but due to current launch mass restrictions, it is prohibitively costly. Also, the current uncertainties in risk projection prevent the actual benefit of shielding from being determined. Strategies such as drugs and dietary supplements to reduce the effects of radiation, as well as the selection of crew members are being evaluated as viable options for reducing exposure to radiation and effects of irradiation. Shielding is an effective protective measure for solar particle events. [32] As far as shielding from GCR, high-energy radiation is very penetrating and the effectiveness of radiation shielding depends on the atomic make-up of the material used. [31]

Antioxidants are effectively used to prevent the damage caused by radiation injury and oxygen poisoning (the formation of reactive oxygen species), but since antioxidants work by rescuing cells from a particular form of cell death (apoptosis), they may not protect against damaged cells that can initiate tumor growth. [31]

Evidence sub-pages

The evidence and updates to projection models for cancer risk from low-LET radiation are reviewed periodically by several bodies, which include the following organizations: [19]

These committees release new reports about every 10 years on cancer risks that are applicable to low-LET radiation exposures. Overall, the estimates of cancer risks among the different reports of these panels will agree within a factor of two or less. There is continued controversy for doses that are below 5 mSv, however, and for low dose-rate radiation because of debate over the linear no-threshold hypothesis that is often used in statistical analysis of these data. The BEIR VII report, [4] which is the most recent of the major reports is used in the following sub-pages. Evidence for low-LET cancer effects must be augmented by information on protons, neutrons, and HZE nuclei that is only available in experimental models. Such data have been reviewed by NASA several times in the past and by the NCRP. [9] [19] [33] [34]

See also

Related Research Articles

Sievert SI unit of equivalent dose of ionizing radiation

The sievert is a derived unit of ionizing radiation dose in the International System of Units (SI) and is a measure of the health effect of low levels of ionizing radiation on the human body. The sievert is important in dosimetry and radiation protection, and is named after Rolf Maximilian Sievert, a Swedish medical physicist renowned for work on radiation dose measurement and research into the biological effects of radiation.

Ionizing radiation, including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. The particles generally travel at a speed that is greater than 1% of that of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum.

The gray is a derived unit of ionizing radiation dose in the International System of Units (SI). It is defined as the absorption of one joule of radiation energy per kilogram of matter.

Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.

Radiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency (IAEA) as "The protection of people from harmful effects of exposure to ionizing radiation, and the means for achieving this". Exposure can be from a source of radiation external to the human body or due to internal irradiation caused by the ingestion of radioactive contamination.

Equivalent dose is a dose quantity H representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the physical quantity absorbed dose, but also takes into account the biological effectiveness of the radiation, which is dependent on the radiation type and energy. In the SI system of units, the unit of measure is the sievert (Sv).

Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection, and radiology. It is also used to directly compare the effect of radiation on inanimate matter such as in radiation hardening.

Linear no-threshold model Deprecated model predicting health effects of radiation

The linear no-threshold model (LNT) is a dose-response model used in radiation protection to estimate stochastic health effects such as radiation-induced cancer, genetic mutations and teratogenic effects on the human body due to exposure to ionizing radiation. The model statistically extrapolates effects of radiation from very high doses into very low doses, where no biological effects are observed. The LNT model lies at a foundation of a postulate that all exposure to ionizing radiation is harmful, regardless of how low the dose is, and that the effect is cumulative over lifetime. The model is disputed and is deprecated by a number of international bodies specializing in radiation protection.

Radiation hormesis Hypothesis regarding low doses of ionizing radiation on health

Radiation hormesis is the hypothesis that low doses of ionizing radiation are beneficial, stimulating the activation of repair mechanisms that protect against disease, that are not activated in absence of ionizing radiation. The reserve repair mechanisms are hypothesized to be sufficiently effective when stimulated as to not only cancel the detrimental effects of ionizing radiation but also inhibit disease not related to radiation exposure. This hypothesis has captured the attention of scientists and public alike in recent years.

Effect of spaceflight on the human body Medical consequences of spaceflight

Venturing into the environment of space can have negative effects on the human body. Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton. Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells, balance disorders, eyesight disorders and changes in the immune system. Additional symptoms include fluid redistribution, loss of body mass, nasal congestion, sleep disturbance, and excess flatulence. Overall, NASA refers to the various deleterious effects of spaceflight on the human body by the acronym RIDGE.

Radiobiology is a field of clinical and basic medical sciences that involves the study of the action of ionizing radiation on living things, especially health effects of radiation. Ionizing radiation is generally harmful and potentially lethal to living things but can have health benefits in radiation therapy for the treatment of cancer and thyrotoxicosis. Its most common impact is the induction of cancer with a latent period of years or decades after exposure. High doses can cause visually dramatic radiation burns, and/or rapid fatality through acute radiation syndrome. Controlled doses are used for medical imaging and radiotherapy.

Health threats from cosmic rays are the dangers posed by cosmic rays to astronauts on interplanetary missions or any missions that venture through the Van-Allen Belts or outside the Earth's magnetosphere. They are one of the greatest barriers standing in the way of plans for interplanetary travel by crewed spacecraft, but space radiation health risks also occur for missions in low Earth orbit such as the International Space Station (ISS).

David A. Schauer, ScD, CHP, is Executive Director Emeritus of the National Council on Radiation Protection and Measurements (NCRP). During his tenure a number of updated and new publications were issued by the Council.

Effective dose is a dose quantity in the International Commission on Radiological Protection (ICRP) system of radiological protection.

The committed dose in radiological protection is a measure of the stochastic health risk due to an intake of radioactive material into the human body. Stochastic in this context is defined as the probability of cancer induction and genetic damage, due to low levels of radiation. The SI unit of measure is the sievert.

It is inevitable that medical conditions of varying complexity, severity and emergency will occur during spaceflight missions with human participants. Different levels of care are required depending on the problem, available resources and time required to return to Earth.


Studies with protons and HZE nuclei of relative biological effectiveness for molecular, cellular, and tissue endpoints, including tumor induction, demonstrate risk from space radiation exposure. This evidence may be extrapolated to applicable chronic conditions that are found in space and from the heavy ion beams that are used at accelerators.

Epidemiological studies of the health effects of low levels of ionizing radiation, in particular the incidence and mortality from various forms of cancer, have been carried out in different population groups exposed to such radiation. These have included survivors of the atomic bombings of Hiroshima and Nagasaki in 1945, workers at nuclear reactors, and medical patients treated with X-rays.

HZE ions are the high-energy nuclei component of galactic cosmic rays (GCRs) which have an electric charge greater than +2. The abbreviation "HZE" comes from high (H) atomic number (Z) and energy (E). HZE ions include the nuclei of all elements heavier than hydrogen and helium. Each HZE ion consists of a nucleus with no orbiting electrons, meaning that the charge on the ion is the same as the atomic number of the nucleus.

Travel outside the Earth's protective atmosphere, magnetosphere, and gravitational field can harm human health, and understanding such harm is essential for successful manned spaceflight. Potential effects on the central nervous system (CNS) are particularly important. A vigorous ground-based cellular and animal model research program will help quantify the risk to the CNS from space radiation exposure on future long distance space missions and promote the development of optimized countermeasures.

References

  1. 1 2 3 4 Cucinotta, FA; Durante, M (2006). "Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings" (PDF). Lancet Oncol. 7 (5): 431–435. doi:10.1016/S1470-2045(06)70695-7. PMID   16648048.
  2. Cucinotta, FA; Kim, MH; Willingham, V; George, KA (Jul 2008). "Physical and biological organ dosimetry analysis for international space station astronauts". Radiation Research. 170 (1): 127–38. Bibcode:2008RadR..170..127C. doi:10.1667/RR1330.1. PMID   18582161. S2CID   44808142.
  3. 1 2 Durante, M; Cucinotta, FA (June 2008). "Heavy ion carcinogenesis and human space exploration". Nature Reviews. Cancer. 8 (6): 465–72. doi:10.1038/nrc2391. hdl: 2060/20080012531 . PMID   18451812. S2CID   8394210. Archived from the original on 2016-03-04.
  4. 1 2 Committee to assess Health Risks from Exposure to Low levels of Ionizing Radiation (2006). Health risks from exposure to low levels of ionizing radiation: BIER VII - Phase 2. Washington, D.C.: The National Academies Press. doi:10.17226/11340. ISBN   978-0-309-09156-5.
  5. Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. p. 121. Retrieved 6 June 2012.
  6. 1 2 3 4 5 6 7 8 9 Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. pp. 122–123. Retrieved 6 June 2012.
  7. "Galactic Cosmic Rays". NASA. Archived from the original on 2 December 1998. Retrieved 6 June 2012.
  8. 1 2 3 4 Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. p. 126. Retrieved 8 June 2012.
  9. 1 2 3 4 5 6 7 NCRP (2000). NCRP Report No. 132, Radiation Protection Guidance for Activities in Low-Earth Orbit. Bethseda, Md.: NCRP. Archived from the original on 2013-10-04.
  10. Rettner, Rachael. "Space Radiation Doesn't Seem to Be Causing Astronauts to Die from Cancer, Study Finds". LiveScience. Retrieved 7 May 2021.
  11. Reynolds, R.J.; Bukhtiyarov, I.V.; Tikhonova, G.I. (4 July 2019). "Contrapositive logic suggests space radiation not having a strong impact on mortality of US astronauts and Soviet and Russian cosmonauts". Scientific Reports. 9 (8583). Retrieved 6 May 2021.
  12. Hamm, P B; Billica, R D; Johnson, G S; Wear, M L; Pool, S L (February 1998). "Risk of cancer mortality among the Longitudinal Study of Astronaut Health (LSAH) participants". Aviat Space Environ Med. 69 (2): 142–4. Retrieved 8 May 2021.
  13. 1 2 Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. pp. 137–138. Retrieved 8 June 2012.
  14. 1 2 Kerr, Richard (31 May 2013). "Radiation Will Make Astronauts' Trip to Mars Even Riskier". Science . 340 (6136): 1031. Bibcode:2013Sci...340.1031K. doi:10.1126/science.340.6136.1031. PMID   23723213.
  15. 1 2 Zeitlin, C.; Hassler, D. M.; Cucinotta, F. A.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Brinza, D. E.; Kang, S.; Weigle, G.; et al. (31 May 2013). "Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory". Science . 340 (6136): 1080–1084. Bibcode:2013Sci...340.1080Z. doi:10.1126/science.1235989. PMID   23723233. S2CID   604569.
  16. 1 2 Chang, Kenneth (30 May 2013). "Data Point to Radiation Risk for Travelers to Mars". New York Times . Retrieved 31 May 2013.
  17. 1 2 Gelling, Cristy (June 29, 2013). "Mars trip would deliver big radiation dose; Curiosity instrument confirms expectation of major exposures". Science News . 183 (13): 8. doi:10.1002/scin.5591831304 . Retrieved July 8, 2013.
  18. NCRP (2006). Information needed to make radiation protection recommendations for space missions beyond low-earth orbit. Bethesda, MD: National Council on Radiation Protection and Measurements. ISBN   978-0-929600-90-1.
  19. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. pp. 127–131. Retrieved 12 June 2012.
  20. "NRC: 10 CFR 20.1201 Occupational dose limits for adults". Nuclear Regulatory Commission. Retrieved 4 November 2017.
  21. Preston, DL; Shimizu, Y; Pierce, DA; Suyama, A; Mabuchi, K (Oct 2003). "Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997" (PDF). Radiation Research. 160 (4): 381–407. Bibcode:2003RadR..160..381P. doi:10.1667/RR3049. PMID   12968934. S2CID   41215245. Archived from the original (PDF) on 2011-10-28.
  22. Billings, MP; Yucker, WR; Heckman, BR (1973). Body self-shielding data analysis (MDC-G4131 ed.). McDonnell-Douglas Astronautics Company West.
  23. Wilson, JW; Kim, M; Schimmerling, W; Badavi, FF; Thibeaullt, SA; Cucinotta, FA; Shinn, JL; Kiefer, R (1993). "Issues in space radiation protection" (PDF). Health Phys. 68 (1): 50–58. doi:10.1097/00004032-199501000-00006. PMID   7989194.
  24. Cucinotta, FA; Schimmerling, W; Wilson, JW; Peterson, LE; Badhwar, GD; Saganti, PB; Dicello, JF (Nov 2001). "Space radiation cancer risks and uncertainties for Mars missions". Radiation Research. 156 (5 Pt 2): 682–8. Bibcode:2001RadR..156..682C. doi:10.1667/0033-7587(2001)156[0682:SRCRAU]2.0.CO;2. JSTOR   3580473. PMID   11604093.
  25. NCRP (1997). NCRP Report No. 126, Uncertainties in Fatal Cancer Risk Estimates Used in Radiation Protection. Bethesda, Md: NCRP. Archived from the original on 2014-03-08.
  26. Bunger, BM; Cook, JR; Barrick, MK (Apr 1981). "Life table methodology for evaluating radiation risk: an application based on occupational exposures". Health Physics. 40 (4): 439–55. doi:10.1097/00004032-198104000-00002. PMID   7228696.
  27. 1 2 3 4 5 6 7 Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. pp. 144–145. Retrieved 8 June 2012.
  28. Vaeth, M; Pierce, DA (1990). "Calculating excess lifetime risk in relative risk mdels". Environmental Health Perspectives. 81: 83–94. doi:10.1289/ehp.908783. JSTOR   3431010. PMC   1567825 . PMID   2269245.
  29. 1 2 Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. pp. 145–147. Retrieved 8 June 2012.
  30. NCRP (1997). Uncertainties in fatal cancer risk estimates used in radiation protection . Bethesda, Md.: National Council on Radiation Protection and Measurements. ISBN   978-0-929600-57-4.
  31. 1 2 3 4 5 6 7 8 9 10 11 12 Cucinotta, F.A.; Durante, M. "Risk of Radiation Carcinogenesis" (PDF). Human Health and Performance Risks of Space Exploration Missions Evidence reviewed by the NASA Human Research Program. NASA. pp. 155–161. Retrieved 6 June 2012.
  32. Nelson, Gregory (April 2016). "Space Radiation and Human Exposures, A Primer". Radiation Research. 185 (4): 349–358. Bibcode:2016RadR..185..349N. doi: 10.1667/rr14311.1 . PMID   27018778.
  33. NCRP, NCRP Report No. 98 (1989). Guidance on radiation received in space activities. Bethesda, Md.: NCRP.
  34. NCRP, NCRP Report No. 153 (2006). Information needed to make radiation protection recommendations for space missions beyond low-Earth orbit. Bethesda, Md.: NCRP. Archived from the original on 2015-06-10.

PD-icon.svg This article incorporates  public domain material from the National Aeronautics and Space Administration document: "Human Health and Performance Risks of Space Exploration Missions" (PDF).(NASA SP-2009-3405)