Sports biomechanics

Last updated

Introduction

Sports biomechanics is the quantitative based study and analysis of athletes and sports activities in general. It can simply be described as the physics of sports. Within this specialized field of biomechanics, the laws of mechanics are applied in order to gain a greater understanding of athletic performance through mathematical modeling, computer simulation and measurement. Biomechanics, as a broader discipline, is the study of the structure and function of biological systems by means of the methods of mechanics (the branch of physics involving analysis of the actions of forces).

Contents


Within mechanics there are two sub-fields of study: statics, which is the study of systems that are in a state of constant motion either at rest (with no motion) or moving with a constant velocity; and dynamics, which is the study of systems in motion in which acceleration is present, which may involve kinematics (the study of the motion of bodies with respect to time, displacement, velocity, and speed of movement either in a straight line or in a rotary direction) and kinetics (the study of the forces associated with motion, including forces causing motion and forces resulting from motion). [1] Sports biomechanists help people obtain optimal muscle recruitment and performance. A biomechanist also uses their knowledge to apply proper load barring techniques to preserve the body. [2]


Human biomechanics helps analyze the body's movements, exploring how internal forces -- such as muscles, ligaments, and joints -- help create external movement. [3] By incorporating the principles of the broad field of biomechanics with the specific discipline of human biomechanics, sports biomechanics is created. The integration of this broad field and special discipline, forms a more specialized field of biomechanics, meeting the specific demands of athletes, known as sports biomechanics. [3] By analyzing sports biomechanics, changes can be implemented to improve and enhance sports performance, rehabilitation, and injury prevention

Sports performance

Sports performance is one area that can be affected by analyzing the movements of an athlete. A sports biomechanics analyst can identify where an athlete may make errors in their movements and predict possible injury risks. Sports performance can possibly be enhanced and improved by analyzing sports biomechanics. By analyzing the mechanical movements of an athlete, identification of errors and faults can become possible. The errors or faults that can be identified could be improper technique, by comparing to elite level athletes in the same sport. The discovery of possible faults helps improve an athlete's technique and possibly decrease the amount of effort needed to execute the skill. [1] The correction of possible biomechanical errors and/or faults results in improved athletic performance. [2]


Preventative biomechanics is another factor that can lead to improved sports performance. Preventative biomechanics involves the integration of human biomechanical methods and medical clinical practices, with the goal of assessing and reducing the risk of musculoskeletal injuries prior to their occurrence. Preventative biomechanics are able to improve sports performance by mitigating the risk of an athlete becoming injured. [4]

Rehabilitation

Rehabilitation is another area that can be affected by the analyses of the movements of an athlete. Improved rehabilitation can be achieved by analyzing an athlete's sports biomechanics. The use of different modalities in combination with the analysis of sports biomechanics has shortened the time for rehabilitation. [5] A notable modality that's being used during rehabilitation is resistance training. Studies indicate that resistance training has been found to contribute to the enhancement of athletes' joint mobility and stability. [5] The application of resistance training in an athlete's rehabilitation plan has demonstrated strengthening of the muscles surrounding the affected joint and other joints helping support the injury. The results of strengthening help heal from the current injury and prevent more injuries in the future. [5]

Injury prevention

Injury prevention is yet another area that can be influenced by the analysis of an athlete's movements. The analyses of sport biomechanics also have been proven to increase injury prevention and advance injury prevention tactics. By addressing the specific points where injuries most often occur, individual biomechanics around those areas are observed and corrected, if biomechanical faults are discovered. These proactive corrections help lead to the reduction of injuries, due to the early application of preventative measures. [6] As previously highlighted in the sports performance section, preventative sports biomechanics play a large role in injury prevention for athletes. Preventative sports biomechanics involves the combination of human biomechanical methods into medical clinical practices, with a specific emphasis on athletes. The primary goal of preventative sports biomechanics is assessing and reducing the risk of musculoskeletal injuries prior to their occurrence in athletics. By accessing an individual's preventative sports biomechanics, injury prevention increases due to early recognition of errors. [4]

Experimental sports biomechanics

Methods:

Research and applications

See also

Related Research Articles

<span class="mw-page-title-main">Running</span> Method of terrestrial locomotion allowing rapid movement on foot

Running is a method of terrestrial locomotion allowing humans and other animals to move rapidly on foot. Running is a type of gait characterized by an aerial phase in which all feet are above the ground. This is in contrast to walking, where one foot is always in contact with the ground, the legs are kept mostly straight and the center of gravity vaults over the stance leg or legs in an inverted pendulum fashion. A feature of a running body from the viewpoint of spring-mass mechanics is that changes in kinetic and potential energy within a stride co-occur, with energy storage accomplished by springy tendons and passive muscle elasticity. The term running can refer to any of a variety of speeds ranging from jogging to sprinting.

<span class="mw-page-title-main">Sports injury</span> Physical and emotional trauma

Sports injuries are injuries that occur during sport, athletic activities, or exercising. In the United States, there are approximately 30 million teenagers and children who participate in some form of organized sport. Of those, about three million athletes age 14 years and under experience a sports injury annually. According to a study performed at Stanford University, 21 percent of the injuries observed in elite college athletes caused the athlete to miss at least one day of sport, and approximately 77 percent of these injuries involved the knee, lower leg, ankle, or foot. In addition to those sport injuries, the leading cause of death related to sports injuries is traumatic head or neck occurrences.

<span class="mw-page-title-main">Biomechanics</span> Study of the mechanics of biological systems

Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. Biomechanics is a branch of biophysics.

<span class="mw-page-title-main">Rotator cuff</span> Group of muscles

The rotator cuff is a group of muscles and their tendons that act to stabilize the human shoulder and allow for its extensive range of motion. Of the seven scapulohumeral muscles, four make up the rotator cuff. The four muscles are:

Ulnar collateral ligament reconstruction, colloquially known as Tommy John surgery (TJS), is a surgical graft procedure where the ulnar collateral ligament in the medial elbow is replaced with either a tendon from elsewhere in the patient's body, or with one from a deceased donor. The procedure is common among collegiate and professional athletes in several sports, particularly in baseball. The surgery is performed to restore optimal function for repetitive elbow movements or specifically throwing ability, often extending the careers of professional athletes. In many athletes, the surgery is done more than once during their careers.

<span class="mw-page-title-main">Gait analysis</span> Study of locomotion

Gait analysis is the systematic study of animal locomotion, more specifically the study of human motion, using the eye and the brain of observers, augmented by instrumentation for measuring body movements, body mechanics, and the activity of the muscles. Gait analysis is used to assess and treat individuals with conditions affecting their ability to walk. It is also commonly used in sports biomechanics to help athletes run more efficiently and to identify posture-related or movement-related problems in people with injuries.

<span class="mw-page-title-main">Kinesiology</span> Study of human body movement

Kinesiology is the scientific study of human body movement. Kinesiology addresses physiological, anatomical, biomechanical, pathological, neuropsychological principles and mechanisms of movement. Applications of kinesiology to human health include biomechanics and orthopedics; strength and conditioning; sport psychology; motor control; skill acquisition and motor learning; methods of rehabilitation, such as physical and occupational therapy; and sport and exercise physiology. Studies of human and animal motion include measures from motion tracking systems, electrophysiology of muscle and brain activity, various methods for monitoring physiological function, and other behavioral and cognitive research techniques.

<span class="mw-page-title-main">Stretching</span> Form of physical exercise where a muscle is stretched to improve it

Stretching is a form of physical exercise in which a specific muscle or tendon is deliberately expanded and flexed in order to improve the muscle's felt elasticity and achieve comfortable muscle tone. The result is a feeling of increased muscle control, flexibility, and range of motion. Stretching is also used therapeutically to alleviate cramps and to improve function in daily activities by increasing range of motion.

Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. In short, when mechanics concepts surpass being theoretical and are applied and executed, general mechanics becomes applied mechanics. It is this stark difference that makes applied mechanics an essential understanding for practical everyday life. It has numerous applications in a wide variety of fields and disciplines, including but not limited to structural engineering, astronomy, oceanography, meteorology, hydraulics, mechanical engineering, aerospace engineering, nanotechnology, structural design, earthquake engineering, fluid dynamics, planetary sciences, and other life sciences. Connecting research between numerous disciplines, applied mechanics plays an important role in both science and engineering.

<span class="mw-page-title-main">Sprained ankle</span> Medical condition

A sprained ankle is an injury where sprain occurs on one or more ligaments of the ankle. It is the most commonly occurring injury in sports, mainly in ball sports such as basketball, volleyball, football, and tennis.

<span class="mw-page-title-main">Anterior cruciate ligament injury</span> Ligament injury near the knee

An anterior cruciate ligament injury occurs when the anterior cruciate ligament (ACL) is either stretched, partially torn, or completely torn. The most common injury is a complete tear. Symptoms include pain, an audible cracking sound during injury, instability of the knee, and joint swelling. Swelling generally appears within a couple of hours. In approximately 50% of cases, other structures of the knee such as surrounding ligaments, cartilage, or meniscus are damaged.

<span class="mw-page-title-main">Balance (ability)</span> Ability to maintain the line of gravity of a body

Balance in biomechanics, is an ability to maintain the line of gravity of a body within the base of support with minimal postural sway. Sway is the horizontal movement of the centre of gravity even when a person is standing still. A certain amount of sway is essential and inevitable due to small perturbations within the body or from external triggers. An increase in sway is not necessarily an indicator of dysfunctional balance so much as it is an indicator of decreased sensorimotor control.

<span class="mw-page-title-main">Musculoskeletal injury</span> Medical condition

Musculoskeletal injury refers to damage of muscular or skeletal systems, which is usually due to a strenuous activity and includes damage to skeletal muscles, bones, tendons, joints, ligaments, and other affected soft tissues. In one study, roughly 25% of approximately 6300 adults received a musculoskeletal injury of some sort within 12 months—of which 83% were activity-related. Musculoskeletal injury spans into a large variety of medical specialties including orthopedic surgery, sports medicine, emergency medicine and rheumatology.

<span class="mw-page-title-main">Elastic therapeutic tape</span> Pseudo-medicine product; elastic cotton strip with an acrylic adhesive

Elastic therapeutic tape, also called kinesiology tape or kinesiology therapeutic tape, Kinesio tape, k-tape, or KT is an elastic cotton strip with an acrylic adhesive that is purported to ease pain and disability from athletic injuries and a variety of other physical disorders. In individuals with chronic musculoskeletal pain, research suggests that elastic taping may help relieve pain, but not more than other treatment approaches, and no evidence indicates that it can reduce disability in chronic pain cases.

Eccentric training is a type of strength training that involves using the target muscles to control weight as it moves in a downward motion. This type of training can help build muscle, improve athletic performance, and reduce the risk of injury. An eccentric contraction is the motion of an active muscle while it is lengthening under load. Eccentric training is repetitively doing eccentric muscle contractions. For example, in a biceps curl the action of lowering the dumbbell back down from the lift is the eccentric phase of that exercise – as long as the dumbbell is lowered slowly rather than letting it drop.

<span class="mw-page-title-main">Biomechanics of sprint running</span>

Sprinting involves a quick acceleration phase followed by a velocity maintenance phase. During the initial stage of sprinting, the runners have their upper body tilted forward in order to direct ground reaction forces more horizontally. As they reach their maximum velocity, the torso straightens out into an upright position. The goal of sprinting is to reach and maintain high top speeds to cover a set distance in the shortest possible time. A lot of research has been invested in quantifying the biological factors and mathematics that govern sprinting. In order to achieve these high velocities, it has been found that sprinters have to apply a large amount of force onto the ground to achieve the desired acceleration, rather than taking more rapid steps.

Movement assessment is the practice of analysing movement performance during functional tasks to determine the kinematics of individual joints and their effect on the kinetic chain. Three-dimensional or two-dimensional analysis of the biomechanics involved in sporting tasks can assist in prevention of injury and enhancing athletic performance. Identification of abnormal movement mechanics provides physical therapists and Athletic trainers the ability to prescribe more accurate corrective exercise programs to prevent injury and improve exercise rehabilitation and progression following injury and assist in determining readiness to return to sport.

<span class="mw-page-title-main">Kick (association football)</span> Skill in association football

A kick is a skill in association football in which a player strikes the ball with their foot. Association football, more commonly referred to as football and also known as soccer, is a sport played world-wide, with up to 265 million people around the world participating on a yearly basis. Kicking is one of the most difficult skills to acquire in football. This skill is also vitally important, as kicking is the way in which passes are made and the primary means by which goals are scored.

Neuro Biomechanics is based upon the research of bioengineering researchers, neuro-surgery, orthopedic surgery and biomechanists. Neuro Biomechanics are utilized by neurosurgeons, orthopedic surgeons and primarily by integrated physical medicine practitioners. Practitioners are focused on aiding people in the restoration of biomechanics of the skeletal system in order to measurably improve nervous system function, health, function, quality of life, reduce pain and the progression of degenerative joint and disc disease.

<span class="mw-page-title-main">Gideon Ariel</span> Israeli authority in biomechanics

Gideon Ariel is an Israeli authority in biomechanics, as well as a former Olympic track and field athlete who competed in the discus throw.

References

  1. 1 2 Boone, Tommy. "Basic Concepts in Sports Biomechanics". Archived from the original on 28 October 2011. Retrieved 27 October 2011.
  2. 1 2 "BASES - About Biomechanics". www.bases.org.uk. Retrieved 2017-12-13.
  3. 1 2 Knudson, Duane (2021). Fundamentals of Biomechanics. Cham: Springer International Publishing. doi:10.1007/978-3-030-51838-7. ISBN   978-3-030-51837-0.
  4. 1 2 Hewett, Timothy E.; Bates, Nathaniel A. (2017). "Preventive Biomechanics: A Paradigm Shift With a Translational Approach to Injury Prevention". The American Journal of Sports Medicine. 45 (11): 2654–2664. doi:10.1177/0363546516686080. ISSN   0363-5465. PMC   6405413 . PMID   28199800.
  5. 1 2 3 Frost, David M.; Cronin, John; Newton, Robert U. (2010-04-01). "A Biomechanical Evaluation of Resistance". Sports Medicine. 40 (4): 303–326. doi:10.2165/11319420-000000000-00000. ISSN   1179-2035.
  6. Zatsiorsky, Vladimir (2008-04-15). Biomechanics in Sport: Performance Enhancement and Injury Prevention. John Wiley & Sons. ISBN   978-0-470-69304-9.

Bibliography