Squalene/phytoene synthase family

Last updated
SQS_PSY
Identifiers
SymbolSQS_PSY
Pfam PF00494
InterPro IPR002060
PROSITE PDOC00802
SCOP2 1ezf / SCOPe / SUPFAM
OPM superfamily 297
OPM protein 3v66
Membranome 635
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The squalene/phytoene synthase family represents proteins that catalyze the head-to-head condensation of C15 and C20 prenyl units (i.e. farnesyl diphosphate and genranylgeranyl diphosphate). This enzymatic step constitutes part of steroid and carotenoid biosynthesis pathway. Squalene synthase EC (SQS) and Phytoene synthase EC (PSY) are two well-known examples of this protein family and share a number of functional similarities. These similarities are also reflected in their primary structure. [1] [2] [3] In particular three well conserved regions are shared by SQS and PSY; they could be involved in substrate binding and/or the catalytic mechanism. SQS catalyzes the conversion of two molecules of farnesyl diphosphate (FPP) into squalene. It is the first committed step in the cholesterol biosynthetic pathway. The reaction carried out by SQS is catalyzed in two separate steps: the first is a head-to-head condensation of the two molecules of FPP to form presqualene diphosphate; this intermediate is then rearranged in a NADP-dependent reduction, to form squalene:

2 FPP -> presqualene diphosphate + NADP -> squalene

SQS is found in all three domains of life; eukaryotes, archaea (haloarchaea) and bacteria. A recent phylogenetic analysis suggests a bacterial origin of SQS [4] and a later horizontal transfer of the SQS gene to a common ancestor of eukaryotes. Some bacteria are known to alternatively possess a set of three genes to biosynthesize squalene (HpnCDE). [5] HpnC and HpnD are homologous to each other and seem to have co-evolved in HpnCDE-containing species, together with HpnE. HpnCD are further homologous to SQS and PSY and thus are members of the squalene/phytoene synthase family. HpnCD and SQS are inferred to have evolved independently from a PSY homolog. [4]

In yeast, SQS is encoded by the ERG9 gene, in mammals by the FDFT1 gene. SQS is membrane-bound.

PSY catalyzes the conversion of two molecules of geranylgeranyl diphosphate (GGPP) into phytoene. It is the second step in the biosynthesis of carotenoids from isopentenyl diphosphate. The reaction carried out by PSY is catalyzed in two separate steps: the first is a head-to-head condensation of the two molecules of GGPP to form prephytoene diphosphate; this intermediate is then rearranged to form phytoene.

2 GGPP -> prephytoene diphosphate -> phytoene

PSY is found in all organisms that synthesize carotenoids: plants and photosynthetic bacteria as well as some non-photosynthetic bacteria and fungi. In bacteria PSY is encoded by the gene crtB. In plants PSY is localized in the chloroplast. While PSY/CrtB catalyzes the head-to-head condensation for the C20 prenyl unit (GGPP), a group of homologous proteins labelled as CrtM catalyze the same enzymatic reaction for the C15 unit (FPP). [6] The product of two FPP condensation is dehydrosqualene (diapophytoene). CrtB and CrtM share a common ancestry, but it is not known which evolved first.

While the substrates FPP and GGPP are amphipathic, the products squalene, dehydrosqualene and phytoene are all hydrophobic. Thus, the subsequent enzymatic steps in the steroid and carotenoid biosynthesis take place in the cellular membranes of host organisms.

Related Research Articles

<span class="mw-page-title-main">Carotenoid</span> Class of chemical compounds; yellow, orange or red plant pigments

Carotenoids, also called tetraterpenoids, are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, corn, tomatoes, canaries, flamingos, salmon, lobster, shrimp, and daffodils. Carotenoids can be produced from fats and other basic organic metabolic building blocks by all these organisms. It is also produced by endosymbiotic bacteria in whiteflies. Carotenoids from the diet are stored in the fatty tissues of animals, and exclusively carnivorous animals obtain the compounds from animal fat. In the human diet, absorption of carotenoids is improved when consumed with fat in a meal. Cooking carotenoid-containing vegetables in oil and shredding the vegetable both increase carotenoid bioavailability.

<span class="mw-page-title-main">Clavulanic acid</span> Β-lactam molecule used as β-lactamase inhibitor to overcome antibiotic resistance in bacteria

Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.

<span class="mw-page-title-main">Hopanoids</span> Class of chemical compounds

Hopanoids are a diverse subclass of triterpenoids with the same hydrocarbon skeleton as the compound hopane. This group of pentacyclic molecules therefore refers to simple hopenes, hopanols and hopanes, but also to extensively functionalized derivatives such as bacteriohopanepolyols (BHPs) and hopanoids covalently attached to lipid A.

Farnesyl pyrophosphate (FPP), also known as farnesyl diphosphate (FDP), is an intermediate in the biosynthesis of terpenes and terpenoids such as sterols and carotenoids. It is also used in the synthesis of CoQ, as well as dehydrodolichol diphosphate.

CRT is the gene cluster responsible for the biosynthesis of carotenoids. Those genes are found in eubacteria, in algae and are cryptic in Streptomyces griseus.

<span class="mw-page-title-main">Farnesyl-diphosphate farnesyltransferase</span> Class of enzymes

Squalene synthase (SQS) or farnesyl-diphosphate:farnesyl-diphosphate farnesyl transferase is an enzyme localized to the membrane of the endoplasmic reticulum. SQS participates in the isoprenoid biosynthetic pathway, catalyzing a two-step reaction in which two identical molecules of farnesyl pyrophosphate (FPP) are converted into squalene, with the consumption of NADPH. Catalysis by SQS is the first committed step in sterol synthesis, since the squalene produced is converted exclusively into various sterols, such as cholesterol, via a complex, multi-step pathway. SQS belongs to squalene/phytoene synthase family of proteins.

<span class="mw-page-title-main">Ginsenoside</span> Class of steroids

Ginsenosides or panaxosides are a class of natural product steroid glycosides and triterpene saponins. Compounds in this family are found almost exclusively in the plant genus Panax (ginseng), which has a long history of use in traditional medicine that has led to the study of pharmacological effects of ginseng compounds. As a class, ginsenosides exhibit a large variety of subtle and difficult-to-characterize biological effects when studied in isolation.

The enzyme amorpha-4,11-diene synthase (ADS) catalyzes the chemical reaction

Vetispiradiene synthase is an enzyme from Egyptian henbane that catalyzes the following chemical reaction:

In enzymology, a geranyltranstransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">PDSS1</span> Protein-coding gene in the species Homo sapiens

Decaprenyl-diphosphate synthase subunit 1 is an enzyme that in humans is encoded by the PDSS1 gene.

<span class="mw-page-title-main">GGPS1</span> Mammalian protein found in Homo sapiens

Geranylgeranyl pyrophosphate synthase is an enzyme that in humans is encoded by the GGPS1 gene.

<span class="mw-page-title-main">Damascenone</span> Chemical compound

Damascenones are a series of closely related chemical compounds that are components of a variety of essential oils. The damascenones belong to a family of chemicals known as rose ketones, which also includes damascones and ionones. beta-Damascenone is a major contributor to the aroma of roses, despite its very low concentration, and is an important fragrance chemical used in perfumery.

<span class="mw-page-title-main">Phytoene</span> Chemical compound

Phytoene is a 40-carbon intermediate in the biosynthesis of carotenoids. The synthesis of phytoene is the first committed step in the synthesis of carotenoids in plants. Phytoene is produced from two molecules of geranylgeranyl pyrophosphate (GGPP) by the action of the enzyme phytoene synthase. The two GGPP molecules are condensed together followed by removal of diphosphate and proton shift leading to the formation of phytoene.

Phytoene synthase is a transferase enzyme involved in the biosynthesis of carotenoids. It catalyzes the conversion of geranylgeranyl pyrophosphate to phytoene. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Juvabione</span> Chemical compound

Juvabione, historically known as the paper factor, is the methyl ester of todomatuic acid, both of which are sesquiterpenes (C15) found in the wood of true firs of the genus Abies. They occur naturally as part of a mixture of sesquiterpenes based upon the bisabolane scaffold. Sesquiterpenes of this family are known as insect juvenile hormone analogues (IJHA) because of their ability to mimic juvenile activity in order to stifle insect reproduction and growth. These compounds play important roles in conifers as the second line of defense against insect induced trauma and fungal pathogens.

<span class="mw-page-title-main">Polyprenyl synthetase</span>

Polyprenyl synthetases are a class of enzymes responsible for synthesis of isoprenoids. Isoprenoid compounds are synthesized by various organisms. For example, in eukaryotes the isoprenoid biosynthetic pathway is responsible for the synthesis of a variety of end products including cholesterol, dolichol, ubiquinone or coenzyme Q. In bacteria this pathway leads to the synthesis of isopentenyl tRNA, isoprenoid quinones, and sugar carrier lipids. Among the enzymes that participate in that pathway, are a number of polyprenyl synthetase enzymes which catalyze a 1'4-condensation between 5-carbon isoprene units. It has been shown that all the above enzymes share some regions of sequence similarity. Two of these regions are rich in aspartic-acid residues and could be involved in the catalytic mechanism and/or the binding of the substrates.

<span class="mw-page-title-main">Geosmin synthase</span>

Geosmin synthase or germacradienol-geosmin synthase designates a class of bifunctional enzymes that catalyze the conversion of farnesyl diphosphate (FPP) to geosmin, a volatile organic compound known for its earthy smell. The N-terminal half of the protein catalyzes the conversion of farnesyl diphosphate to germacradienol and germacrene D, followed by the C-terminal-mediated conversion of germacradienol to geosmin. The conversion of FPP to geosmin was previously thought to involve multiple enzymes in a biosynthetic pathway.

4,4'-diapophytoene synthase is an enzyme with systematic name farnesyl-diphosphate:farnesyl-diphosphate farnesyltransferase . This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Farnesyl-diphosphate farnesyltransferase 1</span> Protein-coding gene in the species Homo sapiens

Farnesyl-diphosphate farnesyltransferase 1 is a protein that in humans is encoded by the FDFT1 gene.

References

  1. Summers C, Karst F, Charles AD (December 1993). "Cloning, expression and characterisation of the cDNA encoding human hepatic squalene synthase, and its relationship to phytoene synthase". Gene. 136 (1–2Che): 185–92. doi:10.1016/0378-1119(93)90462-c. PMID   8294001.
  2. Robinson GW, Tsay YH, Kienzle BK, Smith-Monroy CA, Bishop RW (May 1993). "Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation". Mol. Cell. Biol. 13 (5): 2706–17. doi:10.1128/mcb.13.5.2706. PMC   359645 . PMID   8474436.
  3. Ramer S, Hugueney P, Bouvier F, Camara B, Kuntz M (November 1993). "Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum". Biochem. Biophys. Res. Commun. 196 (3): 1414–21. doi:10.1006/bbrc.1993.2410. PMID   8250898.
  4. 1 2 Santana-Molina, Carlos; Rivas-Marin, Elena; Rojas, Ana M; Devos, Damien P (2020-07-01). Ursula Battistuzzi, Fabia (ed.). "Origin and Evolution of Polycyclic Triterpene Synthesis". Molecular Biology and Evolution. 37 (7): 1925–1941. doi:10.1093/molbev/msaa054. ISSN   0737-4038. PMC   7306690 . PMID   32125435.
  5. Pan, Jian-Jung; Solbiati, Jose O.; Ramamoorthy, Gurusankar; Hillerich, Brandan S.; Seidel, Ronald D.; Cronan, John E.; Almo, Steven C.; Poulter, C. Dale (2015-05-27). "Biosynthesis of Squalene from Farnesyl Diphosphate in Bacteria: Three Steps Catalyzed by Three Enzymes". ACS Central Science. 1 (2): 77–82. doi:10.1021/acscentsci.5b00115. ISSN   2374-7943. PMC   4527182 . PMID   26258173.
  6. Misawa, Norihiko (2010-01-01), Liu, Hung-Wen (Ben); Mander, Lew (eds.), "1.20 - Carotenoids", Comprehensive Natural Products II, Oxford: Elsevier, pp. 733–753, doi:10.1016/b978-008045382-8.00009-5, ISBN   978-0-08-045382-8 , retrieved 2021-10-22
This article incorporates text from the public domain Pfam and InterPro: IPR002060