Stinespring dilation theorem

Last updated

In mathematics, Stinespring's dilation theorem, also called Stinespring's factorization theorem, named after W. Forrest Stinespring, is a result from operator theory that represents any completely positive map on a C*-algebra as a composition of two completely positive maps each of which has a special form:

Contents

  1. A *-representation of A on some auxiliary Hilbert space K followed by
  2. An operator map of the form TV*TV.

Moreover, Stinespring's theorem is a structure theorem from a C*-algebra into the algebra of bounded operators on a Hilbert space. Completely positive maps are shown to be simple modifications of *-representations, or sometimes called *-homomorphisms.

Formulation

In the case of a unital C*-algebra, the result is as follows:

Theorem. Let A be a unital C*-algebra, H be a Hilbert space, and B(H) be the bounded operators on H. For every completely positive
there exists a Hilbert space K and a unital *-homomorphism
such that
where is a bounded operator. Furthermore, we have

Informally, one can say that every completely positive map can be "lifted" up to a map of the form .

The converse of the theorem is true trivially. So Stinespring's result classifies completely positive maps.

Sketch of proof

We now briefly sketch the proof. Let . For , define

and extend by semi-linearity to all of K. This is a Hermitian sesquilinear form because is compatible with the * operation. Complete positivity of is then used to show that this sesquilinear form is in fact positive semidefinite. Since positive semidefinite Hermitian sesquilinear forms satisfy the Cauchy–Schwarz inequality, the subset

is a subspace. We can remove degeneracy by considering the quotient space . The completion of this quotient space is then a Hilbert space, also denoted by . Next define and . One can check that and have the desired properties.

Notice that is just the natural algebraic embedding of H into K. One can verify that holds. In particular holds so that is an isometry if and only if . In this case H can be embedded, in the Hilbert space sense, into K and , acting on K, becomes the projection onto H. Symbolically, we can write

In the language of dilation theory, this is to say that is a compression of . It is therefore a corollary of Stinespring's theorem that every unital completely positive map is the compression of some *-homomorphism.

Minimality

The triple (π, V, K) is called a Stinespring representation of Φ. A natural question is now whether one can reduce a given Stinespring representation in some sense.

Let K1 be the closed linear span of π(A) VH. By property of *-representations in general, K1 is an invariant subspace of π(a) for all a. Also, K1 contains VH. Define

We can compute directly

and if k and lie in K1

So (π1, V, K1) is also a Stinespring representation of Φ and has the additional property that K1 is the closed linear span of π(A) V H. Such a representation is called a minimal Stinespring representation.

Uniqueness

Let (π1, V1, K1) and (π2, V2, K2) be two Stinespring representations of a given Φ. Define a partial isometry W : K1K2 by

On V1HK1, this gives the intertwining relation

In particular, if both Stinespring representations are minimal, W is unitary. Thus minimal Stinespring representations are unique up to a unitary transformation.

Some consequences

We mention a few of the results which can be viewed as consequences of Stinespring's theorem. Historically, some of the results below preceded Stinespring's theorem.

GNS construction

The Gelfand–Naimark–Segal (GNS) construction is as follows. Let H in Stinespring's theorem be 1-dimensional, i.e. the complex numbers. So Φ now is a positive linear functional on A. If we assume Φ is a state, that is, Φ has norm 1, then the isometry is determined by

for some of unit norm. So

and we have recovered the GNS representation of states. This is one way to see that completely positive maps, rather than merely positive ones, are the true generalizations of positive functionals.

A linear positive functional on a C*-algebra is absolutely continuous with respect to another such functional (called a reference functional) if it is zero on any positive element on which the reference positive functional is zero. This leads to a noncommutative generalization of the Radon–Nikodym theorem. The usual density operator of states on the matrix algebras with respect to the standard trace is nothing but the Radon–Nikodym derivative when the reference functional is chosen to be trace. Belavkin introduced the notion of complete absolute continuity of one completely positive map with respect to another (reference) map and proved an operator variant of the noncommutative Radon–Nikodym theorem for completely positive maps. A particular case of this theorem corresponding to a tracial completely positive reference map on the matrix algebras leads to the Choi operator as a Radon–Nikodym derivative of a CP map with respect to the standard trace (see Choi's Theorem).

Choi's theorem

It was shown by Choi that if is completely positive, where G and H are finite-dimensional Hilbert spaces of dimensions n and m respectively, then Φ takes the form:

This is called Choi's theorem on completely positive maps. Choi proved this using linear algebra techniques, but his result can also be viewed as a special case of Stinespring's theorem: Let (π, V, K) be a minimal Stinespring representation of Φ. By minimality, K has dimension less than that of . So without loss of generality, K can be identified with

Each is a copy of the n-dimensional Hilbert space. From , we see that the above identification of K can be arranged so , where Pi is the projection from K to . Let . We have

and Choi's result is proved.

Choi's result is a particular case of noncommutative Radon–Nikodym theorem for completely positive (CP) maps corresponding to a tracial completely positive reference map on the matrix algebras. In strong operator form this general theorem was proven by Belavkin in 1985 who showed the existence of the positive density operator representing a CP map which is completely absolutely continuous with respect to a reference CP map. The uniqueness of this density operator in the reference Steinspring representation simply follows from the minimality of this representation. Thus, Choi's operator is the Radon–Nikodym derivative of a finite-dimensional CP map with respect to the standard trace.

Notice that, in proving Choi's theorem, as well as Belavkin's theorem from Stinespring's formulation, the argument does not give the Kraus operators Vi explicitly, unless one makes the various identification of spaces explicit. On the other hand, Choi's original proof involves direct calculation of those operators.

Naimark's dilation theorem

Naimark's theorem says that every B(H)-valued, weakly countably-additive measure on some compact Hausdorff space X can be "lifted" so that the measure becomes a spectral measure. It can be proved by combining the fact that C(X) is a commutative C*-algebra and Stinespring's theorem.

Sz.-Nagy's dilation theorem

This result states that every contraction on a Hilbert space has a unitary dilation with the minimality property.

Application

In quantum information theory, quantum channels, or quantum operations, are defined to be completely positive maps between C*-algebras. Being a classification for all such maps, Stinespring's theorem is important in that context. For example, the uniqueness part of the theorem has been used to classify certain classes of quantum channels.

For the comparison of different channels and computation of their mutual fidelities and information another representation of the channels by their "Radon–Nikodym" derivatives introduced by Belavkin is useful. In the finite-dimensional case, Choi's theorem as the tracial variant of the Belavkin's Radon–Nikodym theorem for completely positive maps is also relevant. The operators from the expression

are called the Kraus operators of Φ. The expression

is sometimes called the operator sum representation of Φ.

Related Research Articles

The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".

In functional analysis, a discipline within mathematics, given a C*-algebra A, the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of A and certain linear functionals on A. The correspondence is shown by an explicit construction of the *-representation from the state. It is named for Israel Gelfand, Mark Naimark, and Irving Segal.

In mathematics, the Gelfand–Naimark theorem states that an arbitrary C*-algebra A is isometrically *-isomorphic to a C*-subalgebra of bounded operators on a Hilbert space. This result was proven by Israel Gelfand and Mark Naimark in 1943 and was a significant point in the development of the theory of C*-algebras since it established the possibility of considering a C*-algebra as an abstract algebraic entity without reference to particular realizations as an operator algebra.

In quantum mechanics, a quantum operation is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment. In the context of quantum computation, a quantum operation is called a quantum channel.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In mathematics, and in particular functional analysis, the tensor product of Hilbert spaces is a way to extend the tensor product construction so that the result of taking a tensor product of two Hilbert spaces is another Hilbert space. Roughly speaking, the tensor product is the metric space completion of the ordinary tensor product. This is an example of a topological tensor product. The tensor product allows Hilbert spaces to be collected into a symmetric monoidal category.

<span class="mw-page-title-main">Wigner's theorem</span> Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT are represented on the Hilbert space of states.

In functional analysis and quantum measurement theory, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

In quantum mechanics, the Wigner–Weyl transform or Weyl–Wigner transform is the invertible mapping between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger picture.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, Choi's theorem on completely positive maps is a result that classifies completely positive maps between finite-dimensional (matrix) C*-algebras. An infinite-dimensional algebraic generalization of Choi's theorem is known as Belavkin's "Radon–Nikodym" theorem for completely positive maps.

In operator theory, Naimark's dilation theorem is a result that characterizes positive operator valued measures. It can be viewed as a consequence of Stinespring's dilation theorem.

In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one which satisfies a stronger, more robust condition.

<span class="mw-page-title-main">SIC-POVM</span>

A symmetric, informationally complete, positive operator-valued measure (SIC-POVM) is a special case of a generalized measurement on a Hilbert space, used in the field of quantum mechanics. A measurement of the prescribed form satisfies certain defining qualities that makes it an interesting candidate for a "standard quantum measurement", utilized in the study of foundational quantum mechanics, most notably in QBism. Furthermore, it has been shown that applications exist in quantum state tomography and quantum cryptography, and a possible connection has been discovered with Hilbert's twelfth problem.

In quantum mechanics, weak measurements are a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem the system is necessarily disturbed by the measurement. In the literature weak measurements are also known as unsharp, fuzzy, dull, noisy, approximate, and gentle measurements. Additionally weak measurements are often confused with the distinct but related concept of the weak value.

In quantum information theory and operator theory, the Choi–Jamiołkowski isomorphism refers to the correspondence between quantum channels and quantum states, this is introduced by Man-Duen Choi and Andrzej Jamiołkowski. It is also called channel-state duality by some authors in the quantum information area, but mathematically, this is a more general correspondence between positive operators and the complete positive superoperators.

This is a glossary for the terminology in a mathematical field of functional analysis.

References