Trimyristin

Last updated
Trimyristin [1]
Trimyristin.png
Trimyristin-from-xtal-2001-3D-balls.png
Trimyristin-from-xtal-2001-3D-vdW.png
Names
Systematic IUPAC name
Propane-1,2,3-triyl tri(tetradecanoate)
Other names
Glyceryl trimyristate; Glycerol tritetradecanoate; [2] 1,2,3-Tritetradecanoylglycerol [3]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.008.273 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-099-7
PubChem CID
UNII
  • InChI=1S/C45H86O6/c1-4-7-10-13-16-19-22-25-28-31-34-37-43(46)49-40-42(51-45(48)39-36-33-30-27-24-21-18-15-12-9-6-3)41-50-44(47)38-35-32-29-26-23-20-17-14-11-8-5-2/h42H,4-41H2,1-3H3 X mark.svgN
    Key: DUXYWXYOBMKGIN-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C45H86O6/c1-4-7-10-13-16-19-22-25-28-31-34-37-43(46)49-40-42(51-45(48)39-36-33-30-27-24-21-18-15-12-9-6-3)41-50-44(47)38-35-32-29-26-23-20-17-14-11-8-5-2/h42H,4-41H2,1-3H3
    Key: DUXYWXYOBMKGIN-UHFFFAOYAC
  • CCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC
Properties
C45H86O6
Molar mass 723.177 g·mol−1
AppearanceWhite-yellowish gray solid
Odor Odorless
Density 0.862 g/cm3 (20 °C) [4]
0.8848 g/cm3 (60 °C) [2]
Melting point 56–57 °C (133–135 °F; 329–330 K)
at 760 mmHg [2] [4] [5]
Boiling point 311 °C (592 °F; 584 K) at 760 mmHg [2]
Solubility Slightly soluble in alcohol, ligroin
Soluble in diethyl ether, acetone, benzene, [2] dichloromethane, chloroform, TBME
1.4428 (60 °C) [2]
Structure
Triclinic (β-form) [3]
P1 (β-form) [3]
a = 12.0626 Å, b = 41.714 Å, c = 5.4588 Å (β-form) [3]
α = 73.888°, β = 100.408°, γ = 118.274°
Thermochemistry
1013.6 J/mol·K (β-form, 261.9 K)
1555.2 J/mol·K (331.5 K) [5] [6]
Std molar
entropy
(S298)
1246 J/mol·K (liquid) [6]
−2355 kJ/mol [6]
27643.7 kJ/mol [6]
Hazards
NFPA 704 (fire diamond)
[7]
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Flash point >110 °C (230 °F; 383 K) [7]
421.1 °C (790.0 °F; 694.2 K) [7]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Trimyristin is a saturated fat and the triglyceride of myristic acid with the chemical formula C45H86O6. Trimyristin is a white to yellowish-gray solid that is insoluble in water, but soluble in ethanol, acetone, benzene, chloroform, dichloromethane, ether, and TBME.

Contents

Occurrence

Trimyristin is found naturally in many vegetable fats and oils.

Isolation from nutmeg

Seed of nutmeg contains trimyristin Nutmeg seed.jpg
Seed of nutmeg contains trimyristin

The isolation of trimyristin from powdered nutmeg is a common introductory-level college organic chemistry experiment. [8] [9] It is an uncommonly simple natural product extraction because nutmeg oil generally consists of over eighty percent trimyristin. Trimyristin makes up between 20-25% of the overall mass of dried, ground nutmeg. Separation is generally carried out by steam distillation and purification uses extraction from ether followed by distillation or rotary evaporation to remove the volatile solvent. The extraction of trimyristin can also be done with diethyl ether at room temperature, due to its high solubility in the ether. The experiment is frequently included in curricula, both for its relative ease and to provide instruction in these techniques. Trimyristin can then be used to prepare myristic acid [10] or one of its salts [11] as an example of saponification.

See also

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Tetrahydrofuran</span> Cyclic chemical compound, (CH₂)₄O

Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent.

Saponification is a process of cleaving esters into carboxylate salts and alcohols by the action of aqueous alkali. Typically aqueous sodium hydroxide solutions are used. When the carboxylate is long chain, its salt is called a soap. The saponification of ethyl acetate gives sodium acetate and ethanol:

<span class="mw-page-title-main">Stearin</span> Chemical compound

Stearin, or tristearin, or glyceryl tristearate is an odourless, white powder. It is a triglyceride derived from three units of stearic acid. Most triglycerides are derived from at least two and more commonly three different fatty acids. Like other triglycerides, stearin can crystallise in three polymorphs. For stearin, these melt at 54 (α-form), 65, and 72.5 °C (β-form).

<span class="mw-page-title-main">Stearic acid</span> Eighteen-carbon straight-chain fatty acid

Stearic acid is a saturated fatty acid with an 18-carbon chain. The IUPAC name is octadecanoic acid. It is a soft waxy solid with the formula CH3(CH2)16CO2H. The triglyceride derived from three molecules of stearic acid is called stearin. Stearic acid is a prevalent fatty-acid in nature, found in many animal and vegetable fats, but is usually higher in animal fat than vegetable fat. It has a melting point of 69.4 °C and a pKa of 4.50.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

<span class="mw-page-title-main">Oxalic acid</span> Simplest dicarboxylic acid

Oxalic acid is an organic acid with the systematic name ethanedioic acid and formula HO2C−CO2H, also written as (CO2H)2. It is the simplest dicarboxylic acid. It is a white crystalline solid that forms a colorless solution in water. Its name comes from the fact that early investigators isolated oxalic acid from flowering plants of the genus Oxalis, commonly known as wood-sorrels. It occurs naturally in many foods. Excessive ingestion of oxalic acid or prolonged skin contact can be dangerous.

<span class="mw-page-title-main">Saponification value</span> Milligrams of a base required to saponify 1g of fat

Saponification value or saponification number represents the number of milligrams of potassium hydroxide (KOH) or sodium hydroxide (NaOH) required to saponify one gram of fat under the conditions specified. It is a measure of the average molecular weight of all the fatty acids present in the sample in form of triglycerides. The higher the saponification value, the lower the fatty acids average length, the lighter the mean molecular weight of triglycerides and vice versa. Practically, fats or oils with high saponification value are more suitable for soap making.

<span class="mw-page-title-main">Resorcinol</span> Chemical compound

Resorcinol (or resorcin) is a phenolic compound. It is an organic compound with the formula C6H4(OH)2. It is one of three isomeric benzenediols, the 1,3-isomer (or meta-isomer). Resorcinol crystallizes from benzene as colorless needles that are readily soluble in water, alcohol, and ether, but insoluble in chloroform and carbon disulfide.

<span class="mw-page-title-main">Steam distillation</span> Method of separation in organic chemistry

Steam distillation is a separation process that consists in distilling water together with other volatile and non-volatile components. The steam from the boiling water carries the vapor of the volatiles to a condenser; both are cooled and return to the liquid or solid state, while the non-volatile residues remain behind in the boiling container.

<span class="mw-page-title-main">2-Butanol</span> Secondary alcohol

Butan-2-ol, or sec-butanol, is an organic compound with formula CH3CH(OH)CH2CH3. Its structural isomers are 1-butanol, isobutanol, and tert-butanol. 2-Butanol is chiral and thus can be obtained as either of two stereoisomers designated as (R)-(−)-butan-2-ol and (S)-(+)-butan-2-ol. It is normally encountered as a 1:1 mixture of the two stereoisomers — a racemic mixture.

Myristic acid is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates or tetradecanoates. It is named after the binomial name for nutmeg, from which it was first isolated in 1841 by Lyon Playfair.

<span class="mw-page-title-main">Iron(II) fluoride</span> Chemical compound

Iron(II) fluoride or ferrous fluoride is an inorganic compound with the molecular formula FeF2. It forms a tetrahydrate FeF2·4H2O that is often referred to by the same names. The anhydrous and hydrated forms are white crystalline solids.

1-Tetradecanol, or commonly myristyl alcohol (from Myristica fragrans – the nutmeg plant), is a straight-chain saturated fatty alcohol, with the molecular formula CH3(CH2)12CH2OH. It is a white waxy solid that is practically insoluble in water, soluble in diethyl ether, and slightly soluble in ethanol.

<span class="mw-page-title-main">Octyl acetate</span> Chemical compound

Octyl acetate, or octyl ethanoate, is an organic compound with the formula CH3(CH2)7O2CCH3. It is classified as an ester that is formed from 1-octanol (octyl alcohol) and acetic acid. It is found in oranges, grapefruits, and other citrus products.

<span class="mw-page-title-main">Silver carbonate</span> Chemical compound

Silver carbonate is the chemical compound with the formula Ag2CO3. This salt is yellow but typical samples are grayish due to the presence of elemental silver. It is poorly soluble in water, like most transition metal carbonates.

Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. It is typically performed during the work-up step following a chemical synthesis to purify crude compounds and results in the product being largely free of acidic or basic impurities. A separatory funnel is commonly used to perform an acid-base extraction.

<span class="mw-page-title-main">2-Naphthol</span> Chemical compound

2-Naphthol, or β-naphthol, is a fluorescent colorless (or occasionally yellow) crystalline solid with the formula C10H7OH. It is an isomer of 1-naphthol, differing by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol, but more reactive. Both isomers are soluble in simple alcohols, ethers, and chloroform. 2-Naphthol is a widely used intermediate for the production of dyes and other compounds.

<span class="mw-page-title-main">Tripalmitin</span> Chemical compound

Tripalmitin is a triglyceride derived from the fatty acid palmitic acid.

<span class="mw-page-title-main">Cyclopentyl methyl ether</span> Chemical compound

Cyclopentyl methyl ether (CPME), also known as methoxycyclopentane, is hydrophobic ether solvent. A high boiling point of 106 °C (223 °F) and preferable characteristics such as low formation of peroxides, relative stability under acidic and basic conditions, formation of azeotropes with water coupled with a narrow explosion range render CPME an attractive alternative to other ethereal solvents such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), dioxane, and 1,2-dimethoxyethane (DME).

References

  1. Merck Index , 11th Edition, 9638.
  2. 1 2 3 4 5 6 Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN   978-1-4200-9084-0.
  3. 1 2 3 4 Van Langevelde, A.; Peschar, R.; Schenk, H. (2001). "Structure of β-trimyristin and β-tristearin from high-resolution X-ray powder diffraction data". Acta Crystallographica Section B. 57 (3): 372–377. doi:10.1107/S0108768100019121. PMID   11373397.
  4. 1 2 Sharma, Someshower Dutt; Kitano, Hiroaki; Sagara, Kazunobu (2004). "Phase Change Materials for Low Temperature Solar Thermal Applications" (PDF). Res. Rep. Fac. Eng. Mie Univ. Mie University. 29: 31–64. Retrieved 2014-06-19.
  5. 1 2 Charbonnet, G. H.; Singleton, W. S. (1947). "Thermal properties of fats and oils". Journal of the American Oil Chemists' Society. 24 (5): 140. doi:10.1007/BF02643296. S2CID   101805872.
  6. 1 2 3 4 Trimyristin in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD) (retrieved 2014-06-19)
  7. 1 2 3 "MSDS of Trimyristin". fishersci.ca. Fisher Scientific. Retrieved 2014-06-19.
  8. Frank, Forrest; Roberts, Theodore; Snell, Jane; Yates, Christy; Collins, Joseph (1971). "Trimyristin from nutmeg". Journal of Chemical Education. 48 (4): 255. Bibcode:1971JChEd..48..255F. doi:10.1021/ed048p255.
  9. Vestling, Martha M (1990). "Isolation of trimyristin and cholesterol: Two microscale extractions for one laboratory period". Journal of Chemical Education. 67 (3): 274. Bibcode:1990JChEd..67..274V. doi:10.1021/ed067p274.
  10. Beal, G. D. (1926). "Myristic Acid". Organic Syntheses . 6: 66. doi:10.15227/orgsyn.006.0066.
  11. De Mattos, Marcio C. S; Nicodem, David E (2002). "Soap from Nutmeg: An Integrated Introductory Organic Chemistry Laboratory Experiment". Journal of Chemical Education. 79 (1): 94. Bibcode:2002JChEd..79...94D. doi:10.1021/ed079p94.