This article includes a list of general references, but it lacks sufficient corresponding inline citations .(April 2013) |
Tropospheric propagation describes electromagnetic propagation in relation to the troposphere. The service area from a VHF or UHF radio transmitter extends to just beyond the optical horizon, at which point signals start to rapidly reduce in strength. Viewers living in such a "deep fringe" reception area will notice that during certain conditions, weak signals normally masked by noise increase in signal strength to allow quality reception. Such conditions are related to the current state of the troposphere.
Tropospheric propagated signals travel in the part of the atmosphere adjacent to the surface and extending to some 25,000 feet (8 km). Such signals are thus directly affected by weather conditions extending over some hundreds of miles. During very settled, warm anticyclonic weather (i.e., high pressure), usually weak signals from distant transmitters improve in strength. Another symptom during such conditions may be interference to the local transmitter resulting in co-channel interference, usually horizontal lines or an extra floating picture with analog broadcasts and break-up with digital broadcasts. A settled high-pressure system gives the characteristic conditions for enhanced tropospheric propagation, in particular favouring signals which travel along the prevailing isobar pattern (rather than across it). Such weather conditions can occur at any time, but generally the summer and autumn months are the best periods. In certain favourable locations, enhanced tropospheric propagation may enable reception of ultra high frequency (UHF) TV signals up to 1,000 miles (1,600 km) or more.
The observable characteristics of such high-pressure systems are usually clear, cloudless days with little or no wind. At sunset the upper air cools, as does the surface temperature, but at different rates. This produces a boundary or temperature gradient, which allows an inversion level to form – a similar effect occurs at sunrise. The inversion is capable of allowing very high frequency (VHF) and UHF signal propagation well beyond the normal radio horizon distance.
The inversion effectively reduces sky wave radiation from a transmitter – normally VHF and UHF signals travel on into space when they reach the horizon, the refractive index of the ionosphere preventing signal return. With temperature inversion, however, the signal is to a large extent refracted over the horizon rather than continuing along a direct path into outer space.
Fog also produces good tropospheric results, again due to inversion effects. Fog occurs during high-pressure weather, and if such conditions result in a large belt of fog with clear sky above, there will be heating of the upper fog level and thus an inversion. This situation often arises towards night fall, continues overnight and clears with the sunrise over a period of around 4 – 5 hours.
Tropospheric ducting is a type of radio propagation that tends to happen during periods of stable, anticyclonic weather. In this propagation method, when the signal encounters a rise in temperature in the atmosphere instead of the normal decrease (known as a temperature inversion), the higher refractive index of the atmosphere there will cause the signal to be bent. Tropospheric ducting affects all frequencies, and signals enhanced this way tend to travel up to 800 miles (1,300 km) (though some people have received "tropo" beyond 1,000 miles / 1,600 km), while with tropospheric-bending, stable signals with good signal strength from 500+ miles (800+ km) away are not uncommon when the refractive index of the atmosphere is fairly high.
Tropospheric ducting of radio and television signals is relatively common during the summer and autumn months, and is the result of change in the refractive index of the atmosphere at the boundary between air masses of different temperatures and humidities. Using an analogy, it can be said that the denser air at ground level slows the wave front a little more than does the rare upper air, imparting a downward curve to the wave travel.
Ducting can occur on a very large scale when a large mass of cold air is overrun by warm air. This is termed a temperature inversion, and the boundary between the two air masses may extend for 1,000 miles (1,600 km) or more along a stationary weather front.
Temperature inversions occur most frequently along coastal areas bordering large bodies of water. This is the result of natural onshore movement of cool, humid air shortly after sunset when the ground air cools more quickly than the upper air layers. The same action may take place in the morning when the rising sun warms the upper layers.
Even though tropospheric ducting has been occasionally observed down to 40 MHz, the signal levels are usually very weak. Higher frequencies above 90 MHz are generally more favourably propagated.
High mountainous areas and undulating terrain between the transmitter and receiver can form an effective barrier to tropospheric signals. Ideally, a relatively flat land path between the transmitter and receiver is ideal for tropospheric ducting. Sea paths also tend to produce superior results.
In certain parts of the world, notably the Mediterranean Sea and the Persian Gulf, tropospheric ducting conditions can become established for many months of the year to the extent that viewers regularly receive quality reception of signals over distances of 1,000 miles (1,600 km). Such conditions are normally optimum during very hot settled summer weather.
Tropospheric ducting over water, particularly between California and Hawaii, Brazil and Africa, Australia and New Zealand, Australia and Indonesia, Strait of Florida, and Bahrain and Pakistan, has produced VHF/UHF reception ranging from 1000 to 3,000 miles (1,600 – 4,800 km). A US listening post was built in Ethiopia to exploit a common ducting of signals from southern Russia.
Tropospheric signals exhibit a slow cycle of fading and will occasionally produce signals sufficiently strong for noise-free stereo, reception of Radio Data System (RDS) data, and solid locks of HD Radio streams on FM, noise-free, color TV pictures, or stable DTV reception, as well stable DAB Radio reception. With DVB-T it can also enable a wide SFN, so long as the two transmitters are within a guard interval and are almost equidistant from the receiver as well as synchronised. However, if they are not synchronised and are not equidistant they will interfere with each other.
Virtually all long-distance reception of digital television occurs by tropospheric ducting (due to most, but not all, TV stations broadcasting in the UHF band).
"DXing is the art and science of listening to distant stations (D=distance X=xmitter or transmitter)." [1] The ARRL, association for amateur radio maintains the list of North American distance records, which includes tropo results.
In telecommunications, an atmospheric duct is a horizontal layer in the lower atmosphere in which the vertical refractive index gradients are such that radio signals are guided or ducted, tend to follow the curvature of the Earth, and experience less attenuation in the ducts than they would if the ducts were not present. The duct acts as an atmospheric dielectric waveguide and limits the spread of the wavefront to only the horizontal dimension.
The F region of the ionosphere is home to the F layer of ionization, also called the Appleton–Barnett layer, after the English physicist Edward Appleton and New Zealand physicist and meteorologist Miles Barnett. As with other ionospheric sectors, 'layer' implies a concentration of plasma, while 'region' is the volume that contains the said layer. The F region contains ionized gases at a height of around 150–800 km above sea level, placing it in the Earth's thermosphere, a hot region in the upper atmosphere, and also in the heterosphere, where chemical composition varies with height. Generally speaking, the F region has the highest concentration of free electrons and ions anywhere in the atmosphere. It may be thought of as comprising two layers, the F1 and F2 layers.
In meteorology, an inversion is a phenomenon in which a layer of warmer air overlies cooler air. Normally, air temperature gradually decreases as altitude increases, but this relationship is reversed in an inversion.
Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves can only travel in a direct visual path from the source to the receiver without obstacles. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.
Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).
Tropospheric scatter, also known as troposcatter, is a method of communicating with microwave radio signals over considerable distances – often up to 500 kilometres (310 mi) and further depending on frequency of operation, equipment type, terrain, and climate factors. This method of propagation uses the tropospheric scatter phenomenon, where radio waves at UHF and SHF frequencies are randomly scattered as they pass through the upper layers of the troposphere. Radio signals are transmitted in a narrow beam aimed just above the horizon in the direction of the receiver station. As the signals pass through the troposphere, some of the energy is scattered back toward the Earth, allowing the receiver station to pick up the signal.
Anomalous propagation includes different forms of radio propagation due to an unusual distribution of temperature and humidity with height in the atmosphere. While this includes propagation with larger losses than in a standard atmosphere, in practical applications it is most often meant to refer to cases when signal propagates beyond normal radio horizon.
Co-channel interference or CCI is crosstalk from two different radio transmitters using the same channel. Co-channel interference can be caused by many factors from weather conditions to administrative and design issues. Co-channel interference may be controlled by various radio resource management schemes.
Sporadic E is an uncommon form of radio propagation using a low level of the Earth's ionosphere that normally does not refract radio waves above about 15 MHz.
TV DX and FM DX is the active search for distant radio or television stations received during unusual atmospheric conditions. The term DX is an old telegraphic term meaning "long distance."
Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.
In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of the Earth, skywave propagation can be used to communicate beyond the horizon, at intercontinental distances. It is mostly used in the shortwave frequency bands.
The 2-meter amateur radio band is a portion of the VHF radio spectrum that comprises frequencies stretching from 144 MHz to 148 MHz in International Telecommunication Union region (ITU) Regions 2 and 3 and from 144 MHz to 146 MHz in ITU Region 1 . The license privileges of amateur radio operators include the use of frequencies within this band for telecommunication, usually conducted locally with a line-of-sight range of about 100 miles (160 km).
DXing, taken from DX, the telegraphic shorthand for "distance" or "distant", is the hobby of receiving and identifying distant radio or television signals, or making two-way radio contact with distant stations in amateur radio, citizens band radio or other two-way radio communications. Many DXers also attempt to obtain written verifications of reception or contact, sometimes referred to as "QSLs" or "veries".
Non-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone.
MW DX, short for mediumwave DXing, is the hobby of receiving distant mediumwave radio stations. MW DX is similar to TV and FM DX in that broadcast band (BCB) stations are the reception targets. However, the nature of the lower frequencies used by mediumwave radio stations is very much different from that of the VHF and UHF bands used by FM and TV broadcast stations, and therefore involves different receiving equipment, radio propagation, and reception techniques.
Amateur radio frequency allocation is done by national telecommunication authorities. Globally, the International Telecommunication Union (ITU) oversees how much radio spectrum is set aside for amateur radio transmissions. Individual amateur stations are free to use any frequency within authorized frequency ranges; authorized bands may vary by the class of the station license.
A digital channel election was the process by which television stations in the United States chose which physical radio-frequency TV channel they would permanently use after the analog shutdown in 2009. The process was managed and mandated by the Federal Communications Commission for all full-power TV stations. Low-powered television (LPTV) stations are going through a somewhat different process, and are also allowed to flash-cut to digital.
F2 propagation (F2-skip) is the reflection of VHF signals off the F2 layer of the ionosphere. The phenomenon is rare compared to other forms of propagation but can reflect signals thousands of miles beyond their intended broadcast area, substantially farther than E-skip. F2-skip affects the upper ends of the high frequency (HF) spectrum and the low ends of the very high frequency (VHF) spectrum; only a small portion of F2's effective range overlaps frequencies used by consumer broadcast reception, also contributing to the phenomenon being rarely encountered.
This is an index to articles about terms used in discussion of radio propagation.