Truncated 24-cells

Last updated
Schlegel wireframe 24-cell.png
24-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Schlegel half-solid truncated 24-cell.png
Truncated 24-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Bitruncated 24-cell Schlegel halfsolid.png
Bitruncated 24-cell
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Schlegel diagrams centered on one [3,4] (cells at opposite at [4,3])

In geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell.

Contents

There are two degrees of truncations, including a bitruncation.

Truncated 24-cell

Schlegel half-solid truncated 24-cell.png
Schlegel diagram
Truncated 24-cell
Type Uniform 4-polytope
Schläfli symbols t{3,4,3}
tr{3,3,4}=
t{31,1,1} =
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
Cells4824 4.6.6 Truncated octahedron.png
24 4.4.4 Hexahedron.png
Faces240144 {4}
96 {6}
Edges384
Vertices192
Vertex figure Truncated 24-cell verf.png
equilateral triangular pyramid
Symmetry group F4 [3,4,3], order 1152
Rotation subgroup [3,4,3]+, order 576
Commutator subgroup [3+,4,3+], order 288
Properties convex
Uniform index 23 24 25

The truncated 24-cell or truncated icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 truncated octahedra. Each vertex joins three truncated octahedra and one cube, in an equilateral triangular pyramid vertex figure.

Construction

The truncated 24-cell can be constructed from polytopes with three symmetry groups:

Coxeter group = [3,4,3] = [4,3,3] = [3,31,1]
Schläfli symbol t{3,4,3}tr{3,3,4}t{31,1,1}
Order1152384192
Full
symmetry
group
[3,4,3][4,3,3]<[3,31,1]> = [4,3,3]
[3[31,1,1]] = [3,4,3]
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
Facets 3:CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
1:CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
2:CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1:CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1:CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
1,1,1:CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1:CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Vertex figure Truncated 24-cell verf.png Cantitruncated 16-cell verf.png Omnitruncated demitesseract verf.png

Zonotope

It is also a zonotope: it can be formed as the Minkowski sum of the six line segments connecting opposite pairs among the twelve permutations of the vector (+1,1,0,0).

Cartesian coordinates

The Cartesian coordinates of the vertices of a truncated 24-cell having edge length sqrt(2) are all coordinate permutations and sign combinations of:

(0,1,2,3) [4!×23 = 192 vertices]

The dual configuration has coordinates at all coordinate permutation and signs of

(1,1,1,5) [4×24 = 64 vertices]
(1,3,3,3) [4×24 = 64 vertices]
(2,2,2,4) [4×24 = 64 vertices]

Structure

The 24 cubical cells are joined via their square faces to the truncated octahedra; and the 24 truncated octahedra are joined to each other via their hexagonal faces.

Projections

The parallel projection of the truncated 24-cell into 3-dimensional space, truncated octahedron first, has the following layout:

Images

orthographic projections
Coxeter plane F4
Graph 24-cell t01 F4.svg
Dihedral symmetry [12]
Coxeter planeB3 / A2 (a)B3 / A2 (b)
Graph 24-cell t01 B3.svg 24-cell t23 B3.svg
Dihedral symmetry[6][6]
Coxeter planeB4B2 / A3
Graph 24-cell t01 B4.svg 24-cell t01 B2.svg
Dihedral symmetry[8][4]
Schlegel half-solid truncated 24-cell.png
Schlegel diagram
(cubic cells visible)
Schlegel half-solid cantitruncated 16-cell.png
Schlegel diagram
8 of 24 truncated octahedral cells visible
Truncated xylotetron stereographic oblique.png
Stereographic projection
Centered on truncated tetrahedron
Nets
Truncated 24-cell net.png
Truncated 24-cell
Dual tico net.png
Dual to truncated 24-cell

The convex hull of the truncated 24-cell and its dual (assuming that they are congruent) is a nonuniform polychoron composed of 480 cells: 48 cubes, 144 square antiprisms, 288 tetrahedra (as tetragonal disphenoids), and 384 vertices. Its vertex figure is a hexakis triangular cupola.

Bitruncatotetracontaoctachoron vertex figure.png
Vertex figure

Bitruncated 24-cell

Bitruncated 24-cell
Bitruncated 24-cell Schlegel halfsolid.png
Schlegel diagram, centered on truncated cube, with alternate cells hidden
Type Uniform 4-polytope
Schläfli symbol 2t{3,4,3}
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells48 (3.8.8) Truncated hexahedron.png
Faces336192 {3}
144 {8}
Edges576
Vertices288
Edge figure 3.8.8
Vertex figure Bitruncated 24-cell vertex figure.png
tetragonal disphenoid
dual polytope Disphenoidal 288-cell
Symmetry group Aut(F4), [[3,4,3]], order 2304
Properties convex, isogonal, isotoxal, isochoric
Uniform index 26 27 28
Net Tetracontoctachoron net.png
Net

The bitruncated 24-cell. 48-cell, or tetracontoctachoron is a 4-dimensional uniform polytope (or uniform 4-polytope) derived from the 24-cell.

E. L. Elte identified it in 1912 as a semiregular polytope.

It is constructed by bitruncating the 24-cell (truncating at halfway to the depth which would yield the dual 24-cell).

Being a uniform 4-polytope, it is vertex-transitive. In addition, it is cell-transitive, consisting of 48 truncated cubes, and also edge-transitive, with 3 truncated cubes cells per edge and with one triangle and two octagons around each edge.

The 48 cells of the bitruncated 24-cell correspond with the 24 cells and 24 vertices of the 24-cell. As such, the centers of the 48 cells form the root system of type F4.

Its vertex figure is a tetragonal disphenoid , a tetrahedron with 2 opposite edges length 1 and all 4 lateral edges length √(2+√2).

Alternative names

Structure

The truncated cubes are joined to each other via their octagonal faces in anti orientation; i. e., two adjoining truncated cubes are rotated 45 degrees relative to each other so that no two triangular faces share an edge.

The sequence of truncated cubes joined to each other via opposite octagonal faces form a cycle of 8. Each truncated cube belongs to 3 such cycles. On the other hand, the sequence of truncated cubes joined to each other via opposite triangular faces form a cycle of 6. Each truncated cube belongs to 4 such cycles.

Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time. Edges exist at 4 symmetry positions. Squares exist at 3 positions, hexagons 2 positions, and octagons one. Finally the 4 types of cells exist centered on the 4 corners of the fundamental simplex. [1]

F4CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png k-face fkf0f1f2f3 k-figure Notes
A1A1CDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.png( )f02882214122 s{2,4} F4/A1A1 = 288
CDel node x.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.png{ }f12288*12021 { }v( )
CDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node x.png2*28802112
A2A1CDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node.png {3} f233096**20{ }F4/A2A1 = 1152/6/2 = 96
B2CDel node x.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node x.png t{4} 844*144*11F4/B2 = 1152/8 = 144
A2A1CDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png {3} 303**9602F4/A2A1 = 1152/6/2 = 96
B3CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node x.png t{4,3} f324241286024*( )F4/B3 = 1152/48 = 24
CDel node x.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png241224068*24

Coordinates

The Cartesian coordinates of a bitruncated 24-cell having edge length 2 are all permutations of coordinates and sign of:

(0, 2+√2, 2+√2, 2+2√2)
(1, 1+√2, 1+√2, 3+2√2)

Projections

Projection to 2 dimensions

orthographic projections
Coxeter plane F4B4
Graph 24-cell t12 F4.svg 24-cell t12 B4.svg
Dihedral symmetry [[12]] = [24][8]
Coxeter planeB3 / A2B2 / A3
Graph 24-cell t12 B3.svg 24-cell t12 B2.svg
Dihedral symmetry[6][[4]] = [8]

Projection to 3 dimensions

OrthographicPerspective
The following animation shows the orthographic projection of the bitruncated 24-cell into 3 dimensions. The animation itself is a perspective projection from the static 3D image into 2D, with rotation added to make its structure more apparent.
Bitruncated-24cell-parallelproj-01.gif
The images of the 48 truncated cubes are laid out as follows:
  • The central truncated cube is the cell closest to the 4D viewpoint, highlighted to make it easier to see. To reduce visual clutter, the vertices and edges that lie on this central truncated cube have been omitted.
  • Surrounding this central truncated cube are 6 truncated cubes attached via the octagonal faces, and 8 truncated cubes attached via the triangular faces. These cells have been made transparent so that the central cell is visible.
  • The 6 outer square faces of the projection envelope are the images of another 6 truncated cubes, and the 12 oblong octagonal faces of the projection envelope are the images of yet another 12 truncated cubes.
  • The remaining cells have been culled because they lie on the far side the bitruncated 24-cell, and are obscured from the 4D viewpoint. These include the antipodal truncated cube, which would have projected to the same volume as the highlighted truncated cube, with 6 other truncated cubes surrounding it attached via octagonal faces, and 8 other truncated cubes surrounding it attached via triangular faces.
The following animation shows the cell-first perspective projection of the bitruncated 24-cell into 3 dimensions. Its structure is the same as the previous animation, except that there is some foreshortening due to the perspective projection.

Bitruncated 24cell perspective 04.gif

Stereographic projection
Bitruncated xylotetron stereographic close-up.png

The regular skew polyhedron, {8,4|3}, exists in 4-space with 4 octagonal around each vertex, in a zig-zagging nonplanar vertex figure. These octagonal faces can be seen on the bitruncated 24-cell, using all 576 edges and 288 vertices. The 192 triangular faces of the bitruncated 24-cell can be seen as removed. The dual regular skew polyhedron, {4,8|3}, is similarly related to the square faces of the runcinated 24-cell.

Disphenoidal 288-cell

Disphenoidal 288-cell
Typeperfect [2] polychoron
Symbolf1,2F4 [2]
(1,0,0,0)F4 ⊕ (0,0,0,1)F4 [3]
CoxeterCDel node.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png
Cells Disphenoid tetrahedron.png
288 congruent tetragonal disphenoids
Faces576 congruent isosceles
  (2 short edges)
Edges336192 of length
144 of length
Vertices48
Vertex figure Disphenoidal 288-cell vertex figure.png
(Triakis octahedron)
Dual Bitruncated 24-cell
Coxeter group Aut(F4), [[3,4,3]], order 2304
Orbit vector(1, 2, 1, 1)
Properties convex, isochoric

The disphenoidal 288-cell is the dual of the bitruncated 24-cell. It is a 4-dimensional polytope (or polychoron) derived from the 24-cell. It is constructed by doubling and rotating the 24-cell, then constructing the convex hull.

Being the dual of a uniform polychoron, it is cell-transitive, consisting of 288 congruent tetragonal disphenoids. In addition, it is vertex-transitive under the group Aut(F4). [3]

Images

Orthogonal projections
Coxeter planes B2B3F4
Disphenoidal
288-cell
Dual bitruncated 24-cell B2-3.png F4 roots by 24-cell duals.svg
Bitruncated
24-cell
24-cell t12 B2.svg 24-cell t12 B3.svg 24-cell t12 F4.svg

Geometry

The vertices of the 288-cell are precisely the 24 Hurwitz unit quaternions with norm squared 1, united with the 24 vertices of the dual 24-cell with norm squared 2, projected to the unit 3-sphere. These 48 vertices correspond to the binary octahedral group 2O or <2,3,4>, order 48.

Thus, the 288-cell is the only non-regular 4-polytope which is the convex hull of a quaternionic group, disregarding the infinitely many dicyclic (same as binary dihedral) groups; the regular ones are the 24-cell (≘ 2T or <2,3,3>, order 24) and the 600-cell (≘ 2I or <2,3,5>, order 120). (The 16-cell corresponds to the binary dihedral group 2D2 or <2,2,2>, order 16.)

The inscribed 3-sphere has radius 1/2+2/4 ≈ 0.853553 and touches the 288-cell at the centers of the 288 tetrahedra which are the vertices of the dual bitruncated 24-cell.

The vertices can be coloured in 2 colours, say red and yellow, with the 24 Hurwitz units in red and the 24 duals in yellow, the yellow 24-cell being congruent to the red one. Thus the product of 2 equally coloured quaternions is red and the product of 2 in mixed colours is yellow.

RegionLayerLatituderedyellow
Northern hemisphere3110
22/206
11/280
Equator00612
Southern hemisphere–1–1/280
–22/206
–3–110
Total2424

Placing a fixed red vertex at the north pole (1,0,0,0), there are 6 yellow vertices in the next deeper “latitude” at (2/2,x,y,z), followed by 8 red vertices in the latitude at (1/2,x,y,z). The complete coordinates are given as linear combinations of the quaternionic units , which at the same time can be taken as the elements of the group 2O. The next deeper latitude is the equator hyperplane intersecting the 3-sphere in a 2-sphere which is populated by 6 red and 12 yellow vertices.

Layer 2 is a 2-sphere circumscribing a regular octahedron whose edges have length 1. A tetrahedron with vertex north pole has 1 of these edges as long edge whose 2 vertices are connected by short edges to the north pole. Another long edge runs from the north pole into layer 1 and 2 short edges from there into layer 2.

There are 192 long edges with length 1 connecting equal colours and 144 short edges with length 2–2 ≈ 0.765367 connecting mixed colours. 192*2/48 = 8 long and 144*2/48 = 6 short, that is together 14 edges meet at any vertex.

The 576 faces are isosceles with 1 long and 2 short edges, all congruent. The angles at the base are arccos(4+8/4) ≈ 49.210°. 576*3/48 = 36 faces meet at a vertex, 576*1/192 = 3 at a long edge, and 576*2/144 = 8 at a short one.

The 288 cells are tetrahedra with 4 short edges and 2 antipodal and perpendicular long edges, one of which connects 2 red and the other 2 yellow vertices. All the cells are congruent. 288*4/48 = 24 cells meet at a vertex. 288*2/192 = 3 cells meet at a long edge, 288*4/144 = 8 at a short one. 288*4/576 = 2 cells meet at a triangle.

D4 uniform polychora
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
CDel node.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
CDel node h.pngCDel splitsplit1.pngCDel branch3 hh.pngCDel node h.png
4-demicube t0 D4.svg 4-cube t1 B3.svg 4-demicube t01 D4.svg 4-cube t12 B3.svg 4-demicube t1 D4.svg 24-cell t2 B3.svg 24-cell t23 B3.svg 24-cell h01 B3.svg
{3,31,1}
h{4,3,3}
2r{3,31,1}
h3{4,3,3}
t{3,31,1}
h2{4,3,3}
2t{3,31,1}
h2,3{4,3,3}
r{3,31,1}
{31,1,1}={3,4,3}
rr{3,31,1}
r{31,1,1}=r{3,4,3}
tr{3,31,1}
t{31,1,1}=t{3,4,3}
sr{3,31,1}
s{31,1,1}=s{3,4,3}

B4 family of uniform polytopes:

B4 symmetry polytopes
Name tesseract rectified
tesseract
truncated
tesseract
cantellated
tesseract
runcinated
tesseract
bitruncated
tesseract
cantitruncated
tesseract
runcitruncated
tesseract
omnitruncated
tesseract
Coxeter
diagram
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schläfli
symbol
{4,3,3}t1{4,3,3}
r{4,3,3}
t0,1{4,3,3}
t{4,3,3}
t0,2{4,3,3}
rr{4,3,3}
t0,3{4,3,3}t1,2{4,3,3}
2t{4,3,3}
t0,1,2{4,3,3}
tr{4,3,3}
t0,1,3{4,3,3}t0,1,2,3{4,3,3}
Schlegel
diagram
Schlegel wireframe 8-cell.png Schlegel half-solid rectified 8-cell.png Schlegel half-solid truncated tesseract.png Schlegel half-solid cantellated 8-cell.png Schlegel half-solid runcinated 8-cell.png Schlegel half-solid bitruncated 8-cell.png Schlegel half-solid cantitruncated 8-cell.png Schlegel half-solid runcitruncated 8-cell.png Schlegel half-solid omnitruncated 8-cell.png
B4 4-cube t0.svg 4-cube t1.svg 4-cube t01.svg 4-cube t02.svg 4-cube t03.svg 4-cube t12.svg 4-cube t012.svg 4-cube t013.svg 4-cube t0123.svg
 
Name 16-cell rectified
16-cell
truncated
16-cell
cantellated
16-cell
runcinated
16-cell
bitruncated
16-cell
cantitruncated
16-cell
runcitruncated
16-cell
omnitruncated
16-cell
Coxeter
diagram
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schläfli
symbol
{3,3,4}t1{3,3,4}
r{3,3,4}
t0,1{3,3,4}
t{3,3,4}
t0,2{3,3,4}
rr{3,3,4}
t0,3{3,3,4}t1,2{3,3,4}
2t{3,3,4}
t0,1,2{3,3,4}
tr{3,3,4}
t0,1,3{3,3,4}t0,1,2,3{3,3,4}
Schlegel
diagram
Schlegel wireframe 16-cell.png Schlegel half-solid rectified 16-cell.png Schlegel half-solid truncated 16-cell.png Schlegel half-solid cantellated 16-cell.png Schlegel half-solid runcinated 16-cell.png Schlegel half-solid bitruncated 16-cell.png Schlegel half-solid cantitruncated 16-cell.png Schlegel half-solid runcitruncated 16-cell.png Schlegel half-solid omnitruncated 16-cell.png
B4 4-cube t3.svg 24-cell t0 B4.svg 4-cube t23.svg 24-cell t1 B4.svg 4-cube t03.svg 4-cube t12.svg 4-cube t123.svg 4-cube t023.svg 4-cube t0123.svg

F4 family of uniform polytopes:

24-cell family polytopes
Name 24-cell truncated 24-cell snub 24-cell rectified 24-cell cantellated 24-cell bitruncated 24-cell cantitruncated 24-cell runcinated 24-cell runcitruncated 24-cell omnitruncated 24-cell
Schläfli
symbol
{3,4,3}t0,1{3,4,3}
t{3,4,3}
s{3,4,3}t1{3,4,3}
r{3,4,3}
t0,2{3,4,3}
rr{3,4,3}
t1,2{3,4,3}
2t{3,4,3}
t0,1,2{3,4,3}
tr{3,4,3}
t0,3{3,4,3}t0,1,3{3,4,3}t0,1,2,3{3,4,3}
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel
diagram
Schlegel wireframe 24-cell.png Schlegel half-solid truncated 24-cell.png Schlegel half-solid alternated cantitruncated 16-cell.png Schlegel half-solid cantellated 16-cell.png Cantel 24cell1.png Bitruncated 24-cell Schlegel halfsolid.png Cantitruncated 24-cell schlegel halfsolid.png Runcinated 24-cell Schlegel halfsolid.png Runcitruncated 24-cell.png Omnitruncated 24-cell.png
F4 24-cell t0 F4.svg 24-cell t01 F4.svg 24-cell h01 F4.svg 24-cell t1 F4.svg 24-cell t02 F4.svg 24-cell t12 F4.svg 24-cell t012 F4.svg 24-cell t03 F4.svg 24-cell t013 F4.svg 24-cell t0123 F4.svg
B4 24-cell t0 B4.svg 4-cube t123.svg 24-cell h01 B4.svg 24-cell t1 B4.svg 24-cell t02 B4.svg 24-cell t12 B4.svg 24-cell t012 B4.svg 24-cell t03 B4.svg 24-cell t013 B4.svg 24-cell t0123 B4.svg
B3(a) 4-cube t0 B3.svg 24-cell t01 B3.svg 24-cell h01 B3.svg 24-cell t1 B3.svg 24-cell t02 B3.svg 24-cell t12 B3.svg 24-cell t012 B3.svg 24-cell t03 B3.svg 24-cell t013 B3.svg 24-cell t0123 B3.svg
B3(b) 24-cell t3 B3.svg 24-cell t23 B3.svg 24-cell t2 B3.svg 24-cell t13 B3.svg 24-cell t123 B3.svg 24-cell t023 B3.svg
B2 24-cell t0 B2.svg 24-cell t01 B2.svg 24-cell h01 B2.svg 24-cell t1 B2.svg 24-cell t02 B2.svg 24-cell t12 B2.svg 24-cell t012 B2.svg 24-cell t03 B2.svg 24-cell t013 B2.svg 24-cell t0123 B2.svg

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with 8 triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Vertex figure</span> Shape made by slicing off a corner of a polytope

In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.

<span class="mw-page-title-main">Runcinated 5-cell</span>

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Runcinated tesseracts</span>

In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.

<span class="mw-page-title-main">Snub 24-cell</span>

In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.

<span class="mw-page-title-main">Cantellated tesseract</span>

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Bitruncated cubic honeycomb</span>

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Truncation (geometry)</span> Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Cantellated 24-cells</span>

In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation of the regular 24-cell.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Bitruncation</span> Operation in Euclidean geometry

In geometry, a bitruncation is an operation on regular polytopes. It represents a truncation beyond rectification. The original edges are lost completely and the original faces remain as smaller copies of themselves.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

<span class="mw-page-title-main">Order-4 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

References

  1. Klitzing, Richard. "o3x4x3o - cont".
  2. 1 2 On Perfect 4-Polytopes Gabor Gévay Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 243-259 ] Table 2, page 252
  3. 1 2 Quaternionic Construction of the W(F4) Polytopes with Their Dual Polytopes and Branching under the Subgroups W(B4) and W(B3) × W(A1) Mehmet Koca 1, Mudhahir Al-Ajmi 2 and Nazife Ozdes Koca 3 Department of Physics, College of Science, Sultan Qaboos University P. O. Box 36, Al-Khoud 123, Muscat, Sultanate of Oman, p.18. 5.7 Dual polytope of the polytope (0, 1, 1, 0)F4 = W(F4)(ω2+ω3)