UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase

Last updated
UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase
Identifiers
EC no. 1.1.1.335
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase (EC 1.1.1.335, WlbA, WbpB) is an enzyme with systematic name UDP-N-acetyl-2-amino-2-deoxy-alpha-D-glucuronate:NAD+ 3-oxidoreductase. [1] [2] [3] [4] This enzyme catalyses the following chemical reaction:

UDP-N-acetyl-2-amino-2-deoxy-alpha-D-glucuronate + NAD+ UDP-2-acetamido-2-deoxy-alpha-D-ribo-hex-3-uluronate + NADH + H+

This enzyme participates in the biosynthesis of lipopolysaccharide UDP-alpha-D-ManNAc3NAcA.

Related Research Articles

<span class="mw-page-title-main">Citric acid cycle</span> Chemical reactions to release energy in cells

The citric acid cycle —also known as the Krebs cycle, Szent-Györgyi-Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. The Krebs cycle is used by organisms that respire (as opposed to organisms that ferment) to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a 'cycle', it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

Rhamnose is a naturally occurring deoxy sugar. It can be classified as either a methyl-pentose or a 6-deoxy-hexose. Rhamnose predominantly occurs in nature in its L-form as L-rhamnose (6-deoxy-L-mannose). This is unusual, since most of the naturally occurring sugars are in D-form. Exceptions are the methyl pentoses L-fucose and L-rhamnose and the pentose L-arabinose. However, examples of naturally-occurring D-rhamnose include some species of bacteria, such as Pseudomonas aeruginosa and Helicobacter pylori.

<span class="mw-page-title-main">UDP-glucose 6-dehydrogenase</span> Mammalian protein found in humans

UDP-glucose 6-dehydrogenase is a cytosolic enzyme that in humans is encoded by the UGDH gene.

In enzymology, an UDP-N-acetylglucosamine 6-dehydrogenase (EC 1.1.1.136) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-N-acetylmuramate dehydrogenase</span> Class of enzymes

In enzymology, an UDP-N-acetylmuramate dehydrogenase (EC 1.3.1.98) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-glucose 4-epimerase</span> Class of enzymes

The enzyme UDP-glucose 4-epimerase, also known as UDP-galactose 4-epimerase or GALE, is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in the Leloir pathway of galactose metabolism, catalyzing the reversible conversion of UDP-galactose to UDP-glucose. GALE tightly binds nicotinamide adenine dinucleotide (NAD+), a co-factor required for catalytic activity.

<span class="mw-page-title-main">Malate synthase</span> Class of enzymes

In enzymology, a malate synthase (EC 2.3.3.9) is an enzyme that catalyzes the chemical reaction

UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating) (EC 1.1.1.305, UDP-GlcUA decarboxylase, ArnADH) is an enzyme with systematic name UDP-glucuronate:NAD+ oxidoreductase (decarboxylating). This enzyme catalyses the following chemical reaction

2-deoxy-scyllo-inosamine dehydrogenase (EC 1.1.1.329, neoA (gene name), kanK (gene name)) is an enzyme with systematic name 2-deoxy-scyllo-inosamine:NAD(P)+ 1-oxidoreductase. This enzyme catalyses the following chemical reaction

UDP-N-acetyl-D-mannosamine dehydrogenase (EC 1.1.1.336, UDP-ManNAc 6-dehydrogenase, wecC (gene)) is an enzyme with systematic name UDP-N-acetyl-alpha-D-mannosamine:NAD+ 6-oxidoreductase. This enzyme catalyses the following chemical reaction

2-deoxy-scyllo-inosamine dehydrogenase (SAM-dependent) is an enzyme with systematic name 2-deoxy-scyllo-inosamine:S-adenosyl-L-methionine 1-oxidoreductase. This enzyme catalyses the following chemical reaction

UDP-4-amino-4-deoxy-L-arabinose formyltransferase is an enzyme with systematic name 10-formyltetrahydrofolate:UDP-4-amino-4-deoxy-beta-L-arabinose N-formyltransferase. This enzyme catalyses the following chemical reaction

2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase is an enzyme with systematic name L-aspartate 4-semialdehyde:1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate methylglyoxaltransferase. This enzyme catalyses the following chemical reaction

UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase is an enzyme with systematic name acetyl-CoA:UDP-2-acetamido-3-amino-2,3-dideoxy-alpha-D-glucuronate N-acetyltransferase. This enzyme catalyses the following chemical reaction

UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine N-acetyltransferase is an enzyme with systematic name acetyl-CoA:UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine N-acetyltransferase. This enzyme catalyses the following chemical reaction

UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine transaminase is an enzyme with systematic name UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase is an enzyme with systematic name UDP-2-acetamido-3-amino-2,3-dideoxy-alpha-D-glucuronate:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining) (EC 4.2.1.135, PglF) is an enzyme with systematic name UDP-N-acetyl-α-Dglucosamine hydro-lyase (configuration-retaining; UDP-2-acetamido-2,6-dideoxy-α-Dxylo-hex-4-ulose-forming). This enzyme catalyses the following chemical reaction

UDP-2,3-diacetamido-2,3-dideoxyglucuronic acid 2-epimerase is an enzyme with systematic name 2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronate 2-epimerase. This enzyme catalyses the following chemical reaction

References

  1. Westman EL, McNally DJ, Charchoglyan A, Brewer D, Field RA, Lam JS (May 2009). "Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa". The Journal of Biological Chemistry. 284 (18): 11854–62. doi: 10.1074/jbc.M808583200 . PMC   2673254 . PMID   19282284.
  2. Larkin A, Imperiali B (June 2009). "Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1". Biochemistry. 48 (23): 5446–55. doi:10.1021/bi900186u. PMC   2694220 . PMID   19348502.
  3. Thoden JB, Holden HM (September 2010). "Structural and functional studies of WlbA: A dehydrogenase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid". Biochemistry. 49 (36): 7939–48. doi:10.1021/bi101103s. PMC   4241754 . PMID   20690587.
  4. Thoden JB, Holden HM (March 2011). "Biochemical and structural characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: enzymes required for the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid". Biochemistry. 50 (9): 1483–91. doi:10.1021/bi101871f. PMC   3050068 . PMID   21241053.