Names | Vanguard Test Vehicle-Three Backup |
---|---|
Mission type | International Geophysical Year |
Operator | Naval Research Laboratory |
COSPAR ID | VAGT3B |
Mission duration | 62 seconds (failed to orbit) |
Spacecraft properties | |
Spacecraft | Vanguard 1B |
Spacecraft type | Vanguard |
Manufacturer | Naval Research Laboratory |
Launch mass | 1.5 kg |
Dimensions | Sphere of 16.3 cm in diameter |
Start of mission | |
Launch date | 5 February 1958, 07:33 GMT |
Rocket | Vanguard |
Launch site | Cape Canaveral, LC-18A |
Contractor | Glenn L. Martin Company |
End of mission | |
Decay date | Failed to orbit |
Orbital parameters | |
Reference system | Geocentric orbit (planned) |
Regime | Low Earth orbit |
Perigee altitude | 655 km |
Apogee altitude | 3840 km |
Inclination | 34.2° |
Period | 132.0 minutes |
Vanguard TV-3BU, also called Vanguard Test Vehicle-Three Backup, was the second flight of the American Vanguard rocket. An unsuccessful attempt to place an unnamed satellite, Vanguard 1B, into orbit, the rocket was launched on 5 February 1958. It was launched from LC-18A at the Cape Canaveral Air Force Station. Fifty-seven seconds after launch, control of the vehicle was lost, and it failed to achieve orbit. At 57 seconds, the booster suddenly pitched down. The skinny second stage broke in half from aerodynamic stress, causing the Vanguard to tumble end-over-end before a range safety officer sent the destruct command. The cause of the failure was attributed to a spurious guidance signal that caused the first stage to perform unintended pitch maneuvers. Vanguard TV-3BU only reached an altitude of 6.1 km (3.8 mi), the goal was 3,840 km (2,390 mi).
Early Vanguard project tests had no failures. Vanguard TV-0, Vanguard Test Vehicle zero, was a successful one-stage test done on 8 December 1956. Vanguard TV-1 was a successful one-stage test done on 1 May 1957. Vanguard TV-2 was a successful stage one test on 23 October 1957. Vanguard TV-3BU failure followed Vanguard TV-3 failure, putting the project in chaos. But the next launch, Vanguard 1 on Vanguard TV-4 was successful and put into orbit the fourth artificial Earth orbital satellite and the first satellite to be solar-powered. [1] [2] [3] [4] [5]
The first small-lift launch vehicle was the Sputnik rocket, an uncrewed orbital launch vehicle designed by Sergei Korolev in the Soviet Union, derived from the R-7 Semyorka Intercontinental ballistic missile (ICBM). On 4 October 1957, the Sputnik rocket was used to perform the world's first satellite launch, placing Sputnik 1 satellite into a low Earth orbit. [6] [7] [8] [9] [10] The failure of TV-3BU was another setback for the United States in the early Space Race with the Soviets.
The main purpose of the Vanguard Test Vehicle launchings was systems testing for the launch vehicle and satellite. The program objectives for the satellite were to conduct micrometeorite impact and geodetic measurements from Earth orbit. Engineering studies included the electron charge and temperature of the satellite. The IGY Vanguard satellite program was designed to launch one or more Earth-orbiting satellites during the International Geophysical Year (IGY), which ended on 31 December 1958. [11]
The launch took place on 5 February 1958 at 07:33 GMT from the Atlantic Missile Range, from LC-18A in Cape Canaveral Air Force Station, Florida. The initial launch was nominal, but at an altitude of 460 m (1,510 ft) a malfunction in a connection between control system units or in the first stage servo amplifier resulted in the loss of attitude control. Spurious electrical signals caused-motion of the first stage engine in the pitch plane. At an altitude of about 6.1 km (20,000 feet), 57 seconds into the flight, a violent pitch-down to 45° resulted in excessive structural and air loads on the launch vehicle, which broke up at the aft end of the second stage at 62 seconds, ending the mission. [11]
Vanguard was the designation used for both the satellite and the launch vehicle. The satellite was identical to the Vanguard TV-3 satellite, an approximately 1.5 kg aluminum sphere of 16.3 cm in diameter, nearly identical to the later Vanguard 1. A cylinder lined with heat shields mounted inside the sphere held the instrument payload. It contained a set of mercury-batteries, a 10 mW, 108 MHz telemetry transmitter powered by the batteries, and a 5 mW, 108.03 MHz Minitrack beacon transmitter, which was powered by six square (roughly 5 cm on a side) solar cells, manufactured by Bell Laboratories, mounted on the body of the satellite. Six 30 cm long, 0.8 cm diameter spring-actuated aluminum alloy aerials protruded from the sphere. On actuation, the aerial axes were mutually perpendicular to lines that passed through the center of the sphere. The transmitters were primarily for engineering and tracking data, but were also to determine the total electron content between the spacecraft and ground stations. Vanguard also carried two thermistors which could measure the interior temperature to track the effectiveness of the thermal protection. [11]
A cylindrical separation device was designed to keep the sphere attached to the third stage before deployment. At deployment, a strap holding the satellite in place would be released, and three leaf springs would separate the satellite from the cylinder and third stage at a relative velocity of about 0.3 m/s. [11]
The first stage of the three-stage Vanguard Test vehicle was powered by a General Electric GE X-405 liquid rocket engine, of 125,000 N (28,000 lbf) of thrust, propelled by 7,200 kg (15,900 lb) of kerosene (RP-1) and LOX, with helium pressurant. It also held 152 kg (335 lb) of hydrogen peroxide. It was finless, 13.4 m (44 ft) tall, 1.14 m (3 ft 9 in) in diameter, and had a launch mass of approximately 8,090 kg (17,840 lb). [11]
The second stage was a 5.8 m (19 ft) high, 0.8 m (2 ft 7 in) diameter Aerojet General AJ-10 liquid engine burning 1,520 kg (3,350 lb) Unsymmetrical Dimethylhydrazine (UDMH) and White Inhibited Fuming Nitric Acid (WIFNA) with a helium pressurant tank. It produced a thrust of 32,600 N (7,300 lbf) and had a launch mass of approximately 1,990 kg (4,390 lb). This stage contained the complete guidance and control system. [11]
A solid-propellant rocket with 10,400 N (2,300 lbf) of thrust (for 30 seconds burn time) was developed by the Grand Central Rocket Company to satisfy third-stage requirements. The stage was 1.5 m (4 ft 11 in) high, 0.8 m (2 ft 7 in) in diameter and had a launch mass of 194 kg (428 lb). The thin 0.076 cm (0.030 in) steel casing for the third stage had a hemispherical forward dome with a shaft at the center to support the spacecraft and an aft dome fairing into a steel exit nozzle. [11]
The total height of the vehicle with the satellite fairing was about 21.9 m (72 ft). The payload capacity was 11.3 kg (25 lb) to a 555 km (345 mi) Earth orbit. A nominal launch would have the first stage firing for 144 seconds, bringing the rocket to an altitude of 58 km (36 mi), followed by the second stage burn of 120 seconds to 480 km (300 mi), whereupon the third stage would bring the spacecraft to orbit. This was the same launch vehicle configuration, with minor modifications, as used for Vanguard TV-3 and all succeeding Vanguard flights up to and including Vanguard SLV-6. [11]
Explorer 1 was the first satellite launched by the United States in 1958 and was part of the U.S. participation in the International Geophysical Year (IGY). The mission followed the first two satellites the previous year; the Soviet Union's Sputnik 1 and Sputnik 2, beginning the Cold War Space Race between the two nations.
Vanguard TV-3, was the first attempt of the United States to launch a satellite into orbit around the Earth, after the successful Soviet launches of Sputnik 1 and Sputnik 2. Vanguard TV-3 was a small satellite designed to test the launch capabilities of the three-stage Vanguard and study the effects of the environment on a satellite and its systems in Earth orbit. It was also to be used to obtain geodetic measurements through orbit analysis. Solar cells on Vanguard TV-3 were manufactured by Bell Laboratories.
Vanguard 1 is an American satellite that was the fourth artificial Earth-orbiting satellite to be successfully launched, following Sputnik 1, Sputnik 2, and Explorer 1. It was launched 17 March 1958. Vanguard 1 was the first satellite to have solar electric power. Although communications with the satellite were lost in 1964, it remains the oldest human-made object still in orbit, together with the upper stage of its launch vehicle.
Project Vanguard was a program managed by the United States Navy Naval Research Laboratory (NRL), which intended to launch the first artificial satellite into low Earth orbit using a Vanguard rocket. as the launch vehicle from Cape Canaveral Missile Annex, Florida.
Vanguard 2 is an Earth-orbiting satellite launched 17 February 1959 at 15:55:02 GMT, aboard a Vanguard SLV-4 rocket as part of the United States Navy's Project Vanguard. The satellite was designed to measure cloud cover distribution over the daylight portion of its orbit, for a period of 19 days, and to provide information on the density of the atmosphere for the lifetime of its orbit. As the first weather satellite and one of the first orbital space missions, the launch of Vanguard 2 was an important milestone in the Space Race between the United States and the Soviet Union. Vanguard 2 remains in orbit.
Vanguard 3 is a scientific satellite that was launched into Earth orbit by the Vanguard SLV-7 on 18 September 1959, the third successful Vanguard launch out of eleven attempts. Vanguard rocket: Vanguard Satellite Launch Vehicle-7 (SLV-7) was an unused Vanguard TV-4BU rocket, updated to the final production Satellite Launch Vehicle (SLV).
Explorer 2 was an American unmanned space mission within the Explorer program. Intended to be a repetition of the previous Explorer 1 mission, which placed a satellite into medium Earth orbit, the spacecraft was unable to reach orbit due to a failure in the launch vehicle during launch.
Explorer 3 was an American artificial satellite launched into medium Earth orbit in 1958. It was the second successful launch in the Explorer program, and was nearly identical to the first U.S. satellite Explorer 1 in its design and mission.
The Vanguard rocket was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket, making Vanguard 1 the second successful U.S. orbital launch.
SpaceX CRS-1, also known as SpX-1, was SpaceX's first operational cargo mission to the International Space Station, under their Commercial Resupply Services (CRS-1) contract with NASA. It was the third flight for the uncrewed Dragon cargo spacecraft, and the fourth overall flight for the company's two-stage Falcon 9 launch vehicle. The launch occurred on 8 October 2012 at 00:34:07 UTC.
Antares A-ONE mission was the maiden flight of Orbital Sciences Corporation' Antares launch vehicle including the ascent to space and accurate delivery of a simulated payload, the Cygnus Mass Simulator (CMS), which was launched 21 April 2013. It was launched from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS), Wallops Flight Facility, Virginia. The simulated payload simulates the mass of the Cygnus cargo spacecraft. This dummy payload was sent into an orbit of 240 km × 260 km with an orbital inclination of 51.6°, the same launch profile it will use for Orbital's upcoming cargo supply missions to the International Space Station (ISS) for NASA.
Vanguard TV-0, also called Vanguard Test Vehicle-Zero, was the first sub-orbital test flight of a Viking rocket as part of the Project Vanguard.
Vanguard TV-1, also called Vanguard Test Vehicle-One, was the second sub-orbital test flight of a Vanguard rocket as part of the Project Vanguard. Vanguard TV-1 followed the successful launch of Vanguard TV-0 a one-stage rocket launched in December 1956.
Vanguard TV-2, also called Vanguard Test Vehicle-Two, was the third suborbital test flight of a Vanguard rocket as part of Project Vanguard. Successful TV-2 followed the successful launch of Vanguard TV-0 a one-stage rocket launched in December 1956 and Vanguard TV-1 a two-stage rocket launched in May 1957.
Vanguard TV-5, also called Vanguard Test Vehicle-Five, was a failed flight of the American Vanguard rocket following the successful launch of Vanguard 1 on Vanguard TV-4. Vanguard TV-5 launched on 29 April 1958 at 02:53:00 GMT, from Launch Complex 18A at the Cape Canaveral Air Force Station. The rocket was unsuccessful in its attempt to place an unnamed satellite into orbit.
Vanguard SLV-1, also called Vanguard Satellite Launch Vehicle-1 was hoped to be the second successful flight of the American Vanguard rocket following the successful launch of the Vanguard 1 satellite on rocket Vanguard TV-4 in March 1958.
Vanguard SLV-2, also called Vanguard Satellite Launch Vehicle-2 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.
Vanguard SLV-3, also called Vanguard Satellite Launch Vehicle-3 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.
Vanguard SLV-5, also called Vanguard Satellite Launch Vehicle-Five hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4.
Vanguard SLV-6, also called Vanguard Satellite Launch Vehicle-Six, hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4. Vanguard Satellite Launch Vehicle-6 (SLV-6) was designed to carry a small spherical satellite into Earth orbit to study solar heating of Earth and the heat balance. A faulty second stage pressure valve caused a mission failure.