Wunderpus photogenicus

Last updated

Wunderpus photogenicus
Komodo5 28-12-11 - 47a alert (6695807463).jpg
Individual at Komodo N. P., Indonesia
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Mollusca
Class: Cephalopoda
Order: Octopoda
Family: Octopodidae
Genus: Wunderpus
Hochberg, Norman & Finn, 2006 [1]
Species:
W. photogenicus
Binomial name
Wunderpus photogenicus
Hochberg, Norman & Finn, 2006

Wunderpus photogenicus, the wunderpus octopus, is a small-bodied species of octopus with distinct white and rusty brown coloration. [2] 'Wunderpus' from German "wunder" meaning 'marvel or wonder'. [3]

Contents

Due to the appearance and behavior of the wunderpus, it is frequently confused with its close relative, the mimic octopus. The wunderpus octopus was not discovered until the 1980s and was only officially described in detail in 2006. [3] The wunderpus octopus is important commercially to the underwater photography, dive and tourism communities, especially throughout Indonesia. The wunderpus is also valued as an expensive ornamental marine species for the home aquarium. [2]

Appearance

Close up of W. photogenicus, showing its distinctive color patterns Wonder octopus.jpg
Close up of W. photogenicus, showing its distinctive color patterns

An adult wunderpus octopus displays an individually unique pattern of white spots and bands over a rusty brown background. Even though each body pattern is unique to the individual, generally all wunderpus octopuses display a circular pattern of about six white spots at the posterior lip of its mantle, head and neck area. Some of these spots are fused. [2]

As the wunderpus ages, their body patterns become more complex. Each body is consistently covered in a brownish-red coloration, both dorsally and ventrally, with white lateral bands and markings along their arms, mantle, head and eye stalks. Underneath, their suckers are a yellowish-cream color. [4] The wunderpus has relatively smooth skin with papillae throughout body.

The wunderpus is also known for its ability to mimic other sea animals. The wunderpus can change its color patterns when disturbed or threatened. [5] This quick-change artist is able to change its appearance, both color and shape, in a quick draw in order to get out of harm's way. The change of its color patterns allows the wunderpus to either blend in with its surroundings or mimic a venomous species to scare its threat away. [3] The ability to change patterns and impersonate other species has evolved to ensure the survival of the wunderpus.

Photo identification

Cephalopods are difficult to track over time and distance due to many factors. Researchers usually use naturally occurring injuries and/or scars to identify individuals but this technique does not work for long term identification. An octopus is able to regenerate limbs and heal in a relatively short amount of time. Researchers can also use external tags to help track individuals but octopuses are able to remove external tags from their body making them tough to track. Other methods of tracking and identification include methods like tattooing but that puts the organism at risk so photo-identification is the best way to track this species. [2]

Due to the naturally occurring body color and patterns that the wunderpus exhibits, these color markings are often used as a method to identifying individuals. Photo identification allows for individuals or populations of a species to be identified and tracked without physically handling them. In order for photo-identification to successfully work, the body color and pattern must vary across individuals but remain constant over time. [2] Each individual of the wunderpus exhibits unique white markings over a reddish-brown background, making photo identification the perfect method to track them over time. Being able to track an individual or population of a specific species like the wunderpus octopus, helps scientists study aspects like intraspecific behavioral interaction, survivorship, migration patterns and population estimates. Such observations and data sets facilitate our understanding of this under-documented species. [2]

Chromatophores

Chromatophores, in the case of cephalopods, are neuromuscular organs that contain pigment and function differently than in most other animals. The chromatophores react to stimuli and facilitate interaction with their environment. Each organ contains an elastic sac containing pigment which is attached to the radial muscle of the octopus. When the octopus becomes aroused, the radial muscles contract which expands the chromatophores. In contrast, when the octopus is in a relaxed state, the chromatophores will retract into the elastic sac. [6]

As these chromatophores interact with their environment, it enables the octopus to select, at any time, a particular body pattern. This enables it for instance to camouflage itself and hide from their predators. Another function of their chromatophores is intraspecific communication which facilitates their signalling to one another. [6]

Juvenile and para-larvae octopuses also have chromatophores called founder chromatophores, which are also sac-like organs that contain pigments in their skin. The founder chromatophores are prominent in juveniles and become more masked as the octopus approaches adulthood. [2] The founder chromatophores are found along the ventral mantle and funnel of the para-larvae and it makes it easy to identify cephalopod para-larvae due to is distinct patterns. [4] The founder chromatophores produce unique patterns in hatchlings and make them easy to identify. [4]

Anatomy

The wunderpus has small eyes on top of elongated stalks protruding from its mantle. Over each eye is a conical papilla. The thin-walled mantle of the wunderpus has weak musculature and wide aperture. [5] The head has a distinct neck area and is Y-shaped with the eye on each branch of the 'Y'. The head of a male wunderpus is wider than its mantle and for female wunderpus, their mantle is wider than their head. For females, this is due to the large ovary in their mantle. They have gill with 6-7 lamellae per demibranch present. [5]

The wunderpus has a relatively small body and a flexible hydrostatic skeleton. Their funnel organ is generally W-shaped and adjacent to the short-lateral arms. The dorsal arms of the wunderpus are the shortest, while the ventral or lateral arms are the longest. For males, the third right arm is hectocotylized and lack functional tips. The arms are an important appendage because the octopus relies on it for aggression, display, locomotion and prey capture. [3] Each arm is typically thin, elastic and triangular in cross-section. The width of each arm increases as you move down away from the mouth, towards a quarter of the arm length. [5] Webs develop of the ventro-lateral edge of the arms and are present the entire length of the arms. This is what allows them to make a "net" out of their arms to capture prey. Their webs, like their arms, are also thin and elastic. Their suckers on their arms are smaller and more spaced than most cephalopods and they lack enlarged suckers in both sexes.

Inside the wunderpus is a short, robust intestine. Due to the short nature of the intestine, it is relatively wide. The wunderpus has a crop with a distinct diverticulum and elongated anal flaps. [5] The wunderpus lack an interbranchial water pore system. They have a stylet located above the heart, that is short and made of chitin. In the mouth parts of the octopus there are posterior salivary glands. The beak has a small upper hood and a rounded lower hood. The rostrum is bluntly hooked and there are seven teeth and two marginal plates with the radula for chewing. [5]

Distribution

The wunderpus is found in shallow waters from Bali and Sulawesi north to the Philippines and east to Vanuatu. [5] A popular spot for the wunderpus, documented by dive photographers, is in the volcanic sand plain near the Lembeh Strait. [7] These soft-bodied octopuses are benthic creatures, living along the bottom sediments in relatively shallow waters (no deeper than 20 m or 66 ft). The wunderpus prefers a habitat with soft sediment substrates that allows them to burrow under the substrate or other organisms to seek shelter. [5] Populations of the wunderpus can vary and be as dense as up to 5 individuals per 25 m2 (270 sq ft) or as little as not even being able to be spotted. [2]

Life history

Little is actually known and documented about the behavior and life history of the wunderpus and this could partially be due to their life style choice of solitude. There is little to no social behavior exhibited in the wunderpus octopus. Of the few specific postures and behavioral patterns that have been observed of the wunderpus, it is believed that they are impersonators of other animals. There are studies that suggest that the wunderpus is known to impersonate animals like the lionfish and the banded sea krait. [5] The banded white markings of the wunderpus, allow it to be able to mimic the stripes and spines of the lionfish. It has also been documented that the wunderpus will burrow six of their arms, leaving two free to mimic the appearance of the banded sea krait. [5] Both organisms the wunderpus has been documented impersonating are venomous, suggesting that the wunderpus does this behavior to ward off potential predators.

Reproduction

In male wunderpus, their reproductive organ (penis) is relatively short but strong. They have a spermatophore storage sac located sub-terminally in the mantle, that takes up about 50% of the mantle's length. [5] This storage sac is broad and translucent allowing the spermatophores to be seen through the thin sac wall. [5] The spermatophores are 'unarmed' and are usually in counts of 25-30 in these translucent storage sacs.

The female wunderpus has a large sub-terminal ovary with 4 follicular folds. The female will produce around 2,000 mature small, stalked eggs within a single female brood. [5] The female will carry her eggs in her arms and they typically die shortly after their offspring hatch. [8] Wunderpus hatchlings become water column swimmers and move around with their tiny finger-like arms rather than benthic organisms. [4]

Mating in the wunderpus involves the male mounting the female to insert its short hectocotylized arm into the mantle of the female. [5] Typically in different octopus species in the mating ritual, the males hectocotylized arm is longer which allows more distance between the male and female.

Feeding

The wunderpus feed from dusk to dawn on small crustaceans and fishes. They have two prime feeding strategies. The first method is the "probing" method, where the wunderpus will extend their arms to crevices and holes to look for prey.  When prey is encountered, they use their arms and suckers to hold onto the prey and remove it from its burrow. The second method of feeding requires them to flare their arms and webs over coral and sand to trap their prey and this method is called "web-casting". [9] When the wunderpus does this, it almost looks like an opened umbrella. [5]

While feeding, the wunderpus will retract back into its shelter to feed so they are not exposed to predators while feeding. The wunderpus is a favorite in the home aquarium trade and in captivity, where they display a different feeding behavior. In the wild, they typically feed in the low light of the dusk, but in captivity they have been observed feeding during the day. [5]

Predation

The wunderpus is known to display an interspecific aggressive foraging behavior. Using its right dorsolateral arm or its dorsal and dorsolateral arms, the wunderpus forms a loop around the mantle opening of the other octopus. Studies have found that the wunderpus exhibit this aggressive behavior on its close relative the mimic octopus (Thaumoctopus mimicus). [10] Using its longest arm to form the loop around its opponent, its begins to tighten the loop, constricting it like a snake would constrict its prey. This aggressive display of asphyxiation does not immediately choke its opponent but instead prevents the flow of water into the mantle and out of the funnel. This flow of water is important because it carries water over the gill to oxygenate their blood. Without this replenishment, the octopus will gradually deplete its oxygen and ultimately die. [11] This constriction over the mantle also prevents their opponent from releasing its ink.

Cephalopods are constantly at risk of predation due to their soft bodies, [12] which provide no protection against elements and predators like fish. Most cephalopods are equipped with the ability to ink to deter their predators but unfortunately for the Wunderpus, they have a reduced ink sac and are unable to release ink. [13] When attacked, the Wunderpus is capable of releasing an arm, allowing it to escape from its predators. It will later regenerate its lost limb. [3] It is unknown what the specific predators of the wunderpus octopus are, but it is believed that they are likely preyed upon by aggressive mantis shrimps, flounders and scorpion fishes. [5]

Related Research Articles

<span class="mw-page-title-main">Octopus</span> Soft-bodied eight-limbed order of molluscs

An octopus is a soft-bodied, eight-limbed mollusc of the order Octopoda. The order consists of some 300 species and is grouped within the class Cephalopoda with squids, cuttlefish, and nautiloids. Like other cephalopods, an octopus is bilaterally symmetric with two eyes and a beaked mouth at the centre point of the eight limbs. The soft body can radically alter its shape, enabling octopuses to squeeze through small gaps. They trail their eight appendages behind them as they swim. The siphon is used both for respiration and for locomotion, by expelling a jet of water. Octopuses have a complex nervous system and excellent sight, and are among the most intelligent and behaviourally diverse of all invertebrates.

<span class="mw-page-title-main">Squid</span> Superorder of cephalopod molluscs

A squid is a mollusc with an elongated soft body, large eyes, eight arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida. Like all other cephalopods, squid have a distinct head, bilateral symmetry, and a mantle. They are mainly soft-bodied, like octopuses, but have a small internal skeleton in the form of a rod-like gladius or pen, made of chitin.

<span class="mw-page-title-main">Cephalopod</span> Class of mollusks

A cephalopod is any member of the molluscan class Cephalopoda such as a squid, octopus, cuttlefish, or nautilus. These exclusively marine animals are characterized by bilateral body symmetry, a prominent head, and a set of arms or tentacles modified from the primitive molluscan foot. Fishers sometimes call cephalopods "inkfish", referring to their common ability to squirt ink. The study of cephalopods is a branch of malacology known as teuthology.

<span class="mw-page-title-main">California two-spot octopus</span> Species of cephalopod

The California two-spot octopus, often simply called a "bimac", is an octopus species native to many parts of the Pacific Ocean including the coast of California. One can identify the species by the circular blue eyespots on each side of its head. Bimacs usually live to be about two years old. They are closely related to Verrill's two-spot octopus. In 2015, the genome was sequenced.

<i>Doryteuthis opalescens</i> Species of Cephalopoda

Doryteuthis opalescens, the opalescent inshore squid or market squid, is a small species of squid in the family Loliginidae. It is a myopsid squid, a near shore group with corneas over their eyes. The species is found in the eastern Pacific Ocean from Baja California, Mexico to Alaska, United States, and as an inshore squid can be found within a range of 200 miles (320 km) off the coast.

<span class="mw-page-title-main">Common cuttlefish</span> Species of cephalopod

The common cuttlefish or European common cuttlefish is one of the largest and best-known cuttlefish species. They are a migratory species that spend the summer and spring inshore for spawning and then move to depths of 100–200 metres (330–660 ft) during autumn and winter. They grow to 49 centimetres (19 in) in mantle length and 4 kilograms (8.8 lb) in weight. Animals from subtropical seas are smaller and rarely exceed 30 centimetres (12 in) in mantle length.

<span class="mw-page-title-main">Pharaoh cuttlefish</span> Species of cephalopods

The pharaoh cuttlefish is a large cuttlefish species, growing to 42 cm in mantle length and 5 kg in weight.

<i>Gonatus onyx</i> Species of squid

Gonatus onyx is in the class Cephalopoda and in the phylum Mollusca. It is also known as the clawed arm hook squid or the black-eyed squid. It got these names from the characteristic black eye and from its two arms with clawed hooks on the end that extend a bit further than the other arms. It is a squid in the family Gonatidae, found most commonly in the northern Pacific Ocean from Japan to California. They are one of the most abundant cephalopods off the coast of California, mostly found at deeper depths, rising during the day most likely to feed.

<i>Velodona</i> Genus of octopuses

Velodona togata is a species of octopus in the monotypic genus Velodona. First described by Carl Chun in 1915, with a second subspecies discovered by Guy Coburn Robson in 1924, it was named for the distinctive membranes on its arms.

<span class="mw-page-title-main">Cuttlefish</span> Order of molluscs

Cuttlefish, or cuttles, are marine molluscs of the suborder Sepiina. They belong to the class Cephalopoda which also includes squid, octopuses, and nautiluses. Cuttlefish have a unique internal shell, the cuttlebone, which is used for control of buoyancy.

<i>Macroctopus</i> Species of mollusc

Macroctopus maorum is known more commonly as the Maori octopus or the New Zealand octopus. It is found in the waters around New Zealand and southern Australia. M. maorum is one of the largest and most aggressive octopus species living in the New Zealand and Australian waters. They feed mainly on crustaceans and fish. Although they have a short life span, the females lay thousands of eggs and are very protective of them.

<i>Vulcanoctopus</i> Species of benthic octopus

Vulcanoctopus hydrothermalis, also known as the vent octopus, is a small benthic octopus endemic to hydrothermal vents. It is the only known species of the genus Vulcanoctopus. This vent octopus is endemic to the hydrothermal vent habitat that is located in the East Pacific Rise.

<i>Sepia elegans</i> Species of cuttlefish

Sepia elegans, the elegant cuttlefish, is a species of cuttlefish in the family Sepiidae from the eastern Atlantic Ocean and the Mediterranean Sea. It is an important species for fisheries in some parts of the Mediterranean where its population may have suffered from overfishing.

<span class="mw-page-title-main">Larger Pacific striped octopus</span> Species of octopus

The larger Pacific striped octopus (LPSO), or Harlequin octopus, is a species of octopus known for its intelligence and gregarious nature. The species was first documented in the 1970s and, being fairly new to scientific observation, has yet to be scientifically described. Because of this, LPSO has no official scientific name. Unlike other octopus species which are normally solitary, the LPSO has been reported as forming groups of up to 40 individuals. While most octopuses are cannibalistic and have to exercise extreme caution while mating, these octopuses mate with their ventral sides touching, pressing their beaks and suckers together in an intimate embrace. The LPSO has presented many behaviors that differ from most species of octopus, including intimate mating behaviors, formation of social communities, unusual hunting behavior, and the ability to reproduce multiple times throughout their life. The LPSO has been found to favor the tropical waters of the Eastern Pacific.

<i>Sepioloidea lineolata</i> Species of cuttlefish

Sepioloidea lineolata or more commonly known as the striped pyjama squid or the striped dumpling squid is a type of bottletail squid that inhabits the Indo-Pacific Oceans of Australia. The striped pyjama squid lives on the seafloor and is both venomous and poisonous. When fully mature, a striped pyjama squid will only be about 7 to 8 centimetres in length. Baby striped pyjama squid can be smaller than 10 millimetres (0.39 in).

<span class="mw-page-title-main">Dwarf cuttlefish</span> Species of cuttlefish

The dwarf cuttlefish (Sepia bandensis), also known as the stumpy-spined cuttlefish, is a species of cuttlefish native to the shallow coastal waters of the Central Indo-Pacific. The holotype of the species was collected from Banda Neira, Indonesia. It is common in coral reef and sandy coast habitats, usually in association with sea cucumbers and sea stars. Sepia baxteri and Sepia bartletti are possible synonyms.

<i>Octopus bimaculatus</i> Species of octopus

Octopus bimaculatus, commonly referred to as Verrill's two-spot octopus, is a similar species to the Octopus bimaculoides, a species it is often mistaken for. The two can be distinguished by the difference in the blue and black chain-like pattern of the ocelli. O. bimaculatus hunt and feed on a diverse number of benthic organisms that also reside off the coast of Southern California. Once the octopus reaches sexual maturity, it shortly dies after mating, which is approximately 12–18 months after hatching. Embryonic development tends to be rapid due to this short lifespan of these organisms.

Abdopus capricornicus is a species of octopus in the family Octopodidae, and is often also referred to as Octopus capricornicus. This octopus is native to the Great Barrier Reef and is often found throughout the Indo-West Pacific Ocean. There are six other species of octopuses within the subgenus Abdopus with a large number of organisms not yet described. This octopus is notable for its unique body patterning through which it can change. The likely uses for this characteristic are camouflage or intraspecific communication. Other organisms in the Abdopus genus include A. horridus, A. abaculus, A. aculeatus, and A. tonganus. Individuals are capable of autotomy, sacrificing a writhing arm to a predator to distract it while making an escape.

Octopus bocki is a species of octopus, which has been located near south Pacific islands such as Fiji, the Philippines, and Moorea and can be found hiding in coral rubble. They can also be referred to as the Bock's pygmy octopus. They are nocturnal and use camouflage as their primary defense against predators as well as to ambush their prey. Their typical prey are crustaceans, crabs, shrimp, and small fish and they can grow to be up to 10cm in size.

<i>Octopus hubbsorum</i> Species of Octopus

Octopus hubbsorum, is an octopus in the family Octopodidae. It is commonly found along tropical waters along the central Pacific Coast of Mexico. Here, they are one of the most commonly caught cephalopods and are commercially extremely important for the economy.

References

  1. Julian Finn (2017). "Wunderpus Hochberg, Norman & Finn, 2006". World Register of Marine Species. Flanders Marine Institute. Retrieved 5 February 2018.
  2. 1 2 3 4 5 6 7 8 Wong, Stephen; Uno, Takako; Ross, Richard; Moore, Bruce; MacDonald, Bill; Humann, Paul; Gentry, David Wayne; DeLoach, Ned; Caldwell, Roy L. (2008-11-14). "Individually Unique Body Color Patterns in Octopus (Wunderpus photogenicus) Allow for Photoidentification". PLOS ONE. 3 (11): e3732. Bibcode:2008PLoSO...3.3732H. doi: 10.1371/journal.pone.0003732 . ISSN   1932-6203. PMC   2579581 . PMID   19009019.
  3. 1 2 3 4 5 "Wunderpus, Coastal Waters, Octopuses & Kin, Wunderpus photogenicus at the Monterey Bay Aquarium". www.montereybayaquarium.org. Retrieved 2019-04-15.
  4. 1 2 3 4 Huffard, Christine (January 2009). "Description of the paralarvae of Wunderpus photogenicus Hochberg, Norman, & Finn, 2006 (Cephalopoda: Octopodidae)". The Raffles Bulletin of ….
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Hochberg, Frederick G. (January 2000). "Wunderpus photogenicus n. gen. and sp., a new octopus from the shallow waters of the Indo-Malayan Archipelago (Cephalopoda: Octopodidae)".{{cite journal}}: Cite journal requires |journal= (help)
  6. 1 2 Messenger, J. B. (November 2001). "Cephalopod chromatophores: neurobiology and natural history". Biological Reviews of the Cambridge Philosophical Society. 76 (4): 473–528. doi:10.1017/S1464793101005772. ISSN   1464-7931. PMID   11762491. S2CID   17172396.
  7. Hanlon, Roger T.; Conroy, LOU-Anne; Forsythe, John W. (2007). "Mimicry and foraging behaviour of two tropical sand-flat octopus species off North Sulawesi, Indonesia". Biological Journal of the Linnean Society. 93: 23–38. doi: 10.1111/j.1095-8312.2007.00948.x .
  8. Gross, M. (2015-09-21). "Intelligent life without bones". Current Biology. 25 (18): R775–R777. doi: 10.1016/j.cub.2015.08.061 . PMID   26649367.
  9. Caetano, Carlos Henrique Soares; Dantas, Renato Junqueira de Souza; Fontoura-da-Silva, Vanessa (2013). "Foraging tactics in Mollusca: a review of the feeding behavior of their most obscure classes (Aplacophora, Polyplacophora, Monoplacophora, Scaphopoda and Cephalopoda)". Oecologia Australis. 17 (3): 358–373. doi: 10.4257/oeco.2013.1703.04 . ISSN   2177-6199.
  10. "Wild Wunderpus photogenicus and Octopus cyanea employ asphyxiating 'constricting' in interactions with other octopuses - PubAg". pubag.nal.usda.gov. doi:10.1080/13235818.2014.909558. S2CID   84721161 . Retrieved 2019-04-16.
  11. Courage, Katherine Harmon (2014-07-25). "Scrawny Wonderpus Puts Stranglehold On Mightier Mimic Octopus". Octopus Chronicles. ScientificAmerican.com . Archived from the original on 2014-07-25. Retrieved 2019-04-16.
  12. Mather, Jennifer; Scheel, David (2014), Iglesias, José; Fuentes, Lidia; Villanueva, Roger (eds.), "Behaviour", Cephalopod Culture, Springer Netherlands, pp. 17–39, doi:10.1007/978-94-017-8648-5_2, ISBN   9789401786478
  13. Caldwell, Roy L.; Huffard, Christine L. (2002-07-01). "Inking in a Blue-Ringed Octopus, Hapalochlaena lunulata, with a Vestigial Ink Sac" (PDF). Pacific Science. 56 (3): 255–257. doi:10.1353/psc.2002.0023. hdl: 10125/2557 . ISSN   1534-6188. S2CID   53865421.