XAP processor

Last updated

XAP is a 16-bit and 32-bit RISC processor architecture developed by Cambridge Consultants. They are designed for use in mixed-signal integrated circuits for sensor or wireless applications including Bluetooth, Zigbee, GPS, RFID or Near Field Communication chips. Typically, these integrated circuits are used in low-cost, high-volume products that are battery-powered and must have low energy consumption. Additional use cases include some wireless sensor networks and medical devices. The XAP soft microprocessor has been implemented in several on-chip design styles, including self-timed asynchronous circuit, 1-of-4 encoding, fully synchronous circuit, [1] and FPGA. [2] The XAP license agreement allows the use of XAP technology for developing products, incorporating it into manufactured items, and sublicensing necessary rights to third parties. It also includes provisions for modification and adaptation of the technology, establishing a framework for ongoing support, development, and maintenance under specific terms and conditions. [3]

Contents

History

XAP1

XAP1, designed in 1994, was used for a number of wireless and sensor ASIC projects at Cambridge Consultants. It was a very small, 3,000-gate, Harvard architecture, 16-bit processor with a 16-bit data bus and an 18-bit instruction bus intended for running programs stored in on-chip read-only memory or ROM. Data and instructions were each addressed by separate 16-bit address bus.

XAP2

The XAP2, a more advanced microprocessor developed and launched in 1999, incorporated a Harvard architecture and utilized 16-bit data paths, marking a significant improvement over its predecessors. Additionally, it adopted a more conventional 16-bit instruction width, which enhanced its compatibility with program storage solutions such as Flash and other off-chip memory types, thereby broadening its application in various electronic devices. Large programs were accommodated by a 24-bit address bus for instructions and there was a 16-bit address bus for data. XAP2 was a 12,000-gate processor with support for interrupts and a software tool chain including a C compiler and the XAPASM assembler for its assembly language. XAP2 was also used in Cambridge Consultants' ASIC designs, and it was also provided to other semiconductor companies as a semiconductor intellectual property core, or IP core.

XAP2 was adopted by three fabless semiconductor companies that emerged from Cambridge Consultants: CSR plc (Cambridge Silicon Radio) is the main provider of Bluetooth chips for mobile phones and headsets; Ember Corporation is a leading supplier of Zigbee chips; and Cyan Technology supplies XAP2-powered microcontrollers. As a consequence and combined with other licensees and Cambridge Consultants’ ASIC projects, there are now over one billion (1,000 million) XAP processors in use worldwide.

XAP3

XAP3 was an experimental 32-bit processor designed at Cambridge Consultants in 2003. It was optimized for low cost, low energy ASIC implementations using modern CMOS semiconductor process technologies. The instruction set was optimized for GNU GCC to achieve high code density. The XAP3 was the first of Cambridge Consultants’ processors to use a Von Neumann architecture with a logically shared address space for Program and Data. The physical program memory could be Flash or one-time programmable EPROM or SRAM. ASIC design was simplified by using a single memory where there was no need to pre-determine the split between Program (instructions) and Data at design time. The XAP3's instruction set with the GCC compiler produced very high code density. This reduced the size of the program memory, which reduced the chip unit cost and reduced the energy consumption.

XAP4

In 2005, further project requirements saw a new 16-bit processor, the XAP4, designed to supersede the XAP2 taking into account the experience gained on XAP3 and the evolving requirements of ASIC designs. XAP4 is a very small, 12,000-gate, Von Neumann bus, 16-bit processor core capable of addressing a total of 64 Kbytes of memory for programs, data and peripherals. It offers high code density combined with good performance in the region of 50 Dhrystone MIPS when clocked at 80 MHz XAP4 was designed for use in modern ASIC or microcontroller applications capable of processing real-world data captured by an analog-to-digital converter (ADC) or similar sources. The processor's 16-bit integer word supports the precision of most ADCs without carrying the overhead of a 32-bit processor. XAP4 also offers a migration path from 8-bit processors, such as 8051, in applications that need increased performance and program size, but cannot justify the cost and overhead of a 32-bit processor. The XAP4 registers (all 16-bit) are; 8 General Purpose, Program Counter, Vector Pointer, FLAGS, INFO, BRKE, 2 Breakpoint. The XAP4 instructions are 16 and 32-bit. The XAP4 compile chain is based on GNU GCC and Binutils.

XAP5

Development of an extended version of this architecture commenced in 2006 and resulted in the XAP5, which was announced in July 2008. XAP5 is a 16-bit processor with a 24-bit address bus making it capable of running programs from memory up to 16 MB. XAP4 and XAP5 are both implemented with a two-stage instruction pipeline, which maximizes their performance when clocked at low frequencies. This is tailored to the requirements of small, low-energy ASICs as it minimizes processor hardware size (the XAP5 core uses 18,000 gates), and it fits designs that are clocked relatively slowly to reduce an ASIC's dynamic power consumption and run programs direct from Flash or OTP memory that has a slow access time. Typical clock speeds for XAP5 are in the range of 16 to 100 MHz on a 0.13 process. XAP5 has particular design features making it suitable for executing programs from Flash including a Vector Pointer and an Address Translation Window, which combine to allow in-place execution of programs and relocation of programs regardless of where they are stored in physical memory. The XAP4 registers (16 and 24-bit) are; 8 General Purpose, Program Counter, Vector Pointer, FLAGS, INFO, BRKE, 4 Breakpoint. The XAP5 instructions are 16, 32 and 48-bit. The XAP5 compile chain is based on GNU GCC and Binutils.

XAP6

XAP6 is a 32-bit processor [4] and was launched in 2013. It has the same type of load-store architecture as the XAP4 and XAP5, but has 32-bit registers and 32-bit buses for Data and Address. The XAP6a implementation has a three-stage instruction pipeline. Like all the XAP processors, the XAP6 has been optimized for low-cost, low-energy and easy verification. XAP6 is tailored for small low-energy ASICs and minimizes processor hardware size (the XAP6 core uses 30,000 gates). The XAP6 registers (all 32-bit) are; 8 General Purpose, Program Counter, Vector Pointer, Global Pointer, FLAGS, INFO, BRKE, 4 Breakpoint. The XAP6 instructions are 16, 32 and 48-bit. The XAP6 compile chain is based on GNU GCC and Binutils.

Related Research Articles

<span class="mw-page-title-main">Motorola 68000</span> Microprocessor

The Motorola 68000 is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Sector.

The NS32000, sometimes known as the 32k, is a series of microprocessors produced by National Semiconductor. The first member of the family came to market in 1982, briefly known as the 16032 before becoming the 32016. It was the first general-purpose microprocessor on the market that used 32-bit data internally: the Motorola 68000 had 32-bit registers and instructions to perform 32-bit arithmetic, but used a 16-bit ALU for arithmetic operations on data, and thus took twice as long to perform those arithmetic operations. However, the 32016 contained many bugs and often could not be run at its rated speed. These problems, and the presence of the otherwise similar 68000 which had been available since 1980, led to little use in the market.

<span class="mw-page-title-main">MCS-51</span> Single chip microcontroller series by Intel

The Intel MCS-51 is a single chip microcontroller (MCU) series developed by Intel in 1980 for use in embedded systems. The architect of the Intel MCS-51 instruction set was John H. Wharton. Intel's original versions were popular in the 1980s and early 1990s, and enhanced binary compatible derivatives remain popular today. It is a complex instruction set computer, but also has some of the features of RISC architectures, such as a large register set and register windows, and has separate memory spaces for program instructions and data.

ARM is a family of RISC instruction set architectures (ISAs) for computer processors. Arm Ltd. develops the ISAs and licenses them to other companies, who build the physical devices that use the instruction set. It also designs and licenses cores that implement these ISAs.

<span class="mw-page-title-main">AVR microcontrollers</span> Family of microcontrollers

AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time.

<span class="mw-page-title-main">PIC microcontrollers</span> Line of single-chip microprocessors from Microchip Technology

PIC is a family of microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to Peripheral Interface Controller, and is currently expanded as Programmable Intelligent Computer. The first parts of the family were available in 1976; by 2013 the company had shipped more than twelve billion individual parts, used in a wide variety of embedded systems.

OpenRISC is a project to develop a series of open-source hardware based central processing units (CPUs) on established reduced instruction set computer (RISC) principles. It includes an instruction set architecture (ISA) using an open-source license. It is the original flagship project of the OpenCores community.

JTAG is an industry standard for verifying designs of and testing printed circuit boards after manufacture.

<span class="mw-page-title-main">Blackfin</span> Family of 16-/32-bit microprocessors

The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality performed by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.

LEON is a radiation-tolerant 32-bit central processing unit (CPU) microprocessor core that implements the SPARC V8 instruction set architecture (ISA) developed by Sun Microsystems. It was originally designed by the European Space Research and Technology Centre (ESTEC), part of the European Space Agency (ESA), without any involvement by Sun. Later versions have been designed by Gaisler Research, under a variety of owners. It is described in synthesizable VHSIC Hardware Description Language (VHDL). LEON has a dual license model: An GNU Lesser General Public License (LGPL) and GNU General Public License (GPL) free and open-source software (FOSS) license that can be used without licensing fee, or a proprietary license that can be purchased for integration in a proprietary product. The core is configurable through VHDL generics, and is used in system on a chip (SOC) designs both in research and commercial settings.

Nios II is a 32-bit embedded processor architecture designed specifically for the Altera family of field-programmable gate array (FPGA) integrated circuits. Nios II incorporates many enhancements over the original Nios architecture, making it more suitable for a wider range of embedded computing applications, from digital signal processing (DSP) to system-control.

The Atmel AVR instruction set is the machine language for the Atmel AVR, a modified Harvard architecture 8-bit RISC single chip microcontroller which was developed by Atmel in 1996. The AVR was one of the first microcontroller families to use on-chip flash memory for program storage.

V850 is a 32-bit RISC CPU architecture produced by Renesas Electronics for embedded microcontrollers. It was designed by NEC as a replacement for their earlier NEC V60 family, and was introduced shortly before NEC sold their designs to Renesas in the early 1990s. It has continued to be developed by Renesas as of 2018.

<span class="mw-page-title-main">NEC V60</span> CISC microprocessor

The NEC V60 is a CISC microprocessor manufactured by NEC starting in 1986. Several improved versions were introduced with the same instruction set architecture (ISA), the V70 in 1987, and the V80 and AFPP in 1989. They were succeeded by the V800 product families, which is currently produced by Renesas Electronics.

LatticeMico32 is a 32-bit microprocessor reduced instruction set computer (RISC) soft core from Lattice Semiconductor optimized for field-programmable gate arrays (FPGAs). It uses a Harvard architecture, which means the instruction and data buses are separate. Bus arbitration logic can be used to combine the two buses, if desired.

<span class="mw-page-title-main">OpenRISC 1200</span> Open source microprocessor

The OpenRISC 1200 (OR1200) is an implementation of the open source OpenRISC 1000 RISC architecture.

eSi-RISC is a configurable CPU architecture. It is available in five implementations: the eSi-1600, eSi-1650, eSi-3200, eSi-3250 and eSi-3264. The eSi-1600 and eSi-1650 feature a 16-bit data-path, while the eSi-32x0s feature 32-bit data-paths, and the eSi-3264 features a mixed 32/64-bit datapath. Each of these processors is licensed as soft IP cores, suitable for integrating into both ASICs and FPGAs.

Zero ASIC Corporation, formerly Adapteva, Inc., is a fabless semiconductor company focusing on low power many core microprocessor design. The company was the second company to announce a design with 1,000 specialized processing cores on a single integrated circuit.

<span class="mw-page-title-main">COP400</span> 4-bit microcontroller family

The COP400 or COP II is a 4-bit microcontroller family introduced in 1977 by National Semiconductor as a follow-on product to their original PMOS COP microcontroller. COP400 family members are complete microcomputers containing internal timing, logic, ROM, RAM, and I/O necessary to implement dedicated controllers. Some COP400 devices were second-sourced by Western Digital as the WD4200 family. In the Soviet Union several COP400 microcontrollers were manufactured as the 1820 series.

References

  1. A. Theodore Markettos. "Active electromagnetic attacks on secure hardware". 2011.
  2. Philip Ling. "Soft cores absorb designs". New Electronics. 2005.
  3. "XAP Technology Licence and XAP2 Development Agreement". www.sec.gov. Retrieved 2024-04-13.
  4. "What is Processor? Processor Definition". amazingalgorithms.com. Retrieved 2024-04-13.