Xanthomonas campestris

Last updated

Xanthomonas campestris
Black rot of crucifers (16230703946).jpg
Black rot of crucifer leaves caused by Xanthomonas campestris pv. campestris
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Xanthomonadales
Family: Xanthomonadaceae
Genus: Xanthomonas
Species:
X. campestris
Binomial name
Xanthomonas campestris
(Pammel 1895) Dowson 1939
Type strain
NCPPB 528
Synonyms

Bacillus campestrisPammel 1895
Pseudomonas campestris(Pammel 1895) Smith 1897
Bacterium campestris(Pammel 1895) Smith 1897
Phytomonas campestris(Pammel 1895) Bergey et al. 1923

Contents

Xanthomonas campestris is a gram-negative, obligate aerobic bacterium that is a member of the Xanthomonas genus, which is a group of bacteria that are commonly known for their association with plant disease. [1] This species includes Xanthomonas campestris pv. campestris the cause of black rot of brassicas (cruciferous vegetables), one of the most important diseases of brasicas worldwide.

These bacteria are facultative saprophytes, meaning that they are typically parasitic while also having the ability to live on dead or decaying organic matter under the proper conditions. Upon initial infection, the bacteria remain in the epiphytic stage; however, the harmful endophytic stage is reached when the bacteria actually enter the plant host through natural openings. [2] In general, the genes that contribute significantly to the plant-bacteria relationship are the avirulence (avr) genes, the hypersensitivity response and pathogenicity (hrp) genes, and the pathogenicity factors (rpf) genes. [1] [3] [4] Additionally, the virulence determinants associated with the seedborne diseases that result from this bacterium include extracellular enzymes, polysaccharides, lipopolysaccharides, etc. [3]

Several strains of Xanthomonas campestris also produce an exopolysaccharide called xanthan, making it valuable in the commercial production of xanthan gum, which has important uses in the food, oil, agricultural, and pharmaceutical industries. [5]

Pathovars

Over 140 pathovars of Xanthomonas campestris have been described initially and typically named according to the plant that they were first found to infect. [1] However, several studies have subsequently proposed the reclassification of many of these pathovars in different species within the genus Xanthomonas. [6] [1] [7] This left six pathovars of X. campestris remaining in this species, which included pathogens of Brassicaceae plants X. campestris pv. aberrans, X. campestris pv. armoraciae, X. campestris pv. barbareae, X. campestris pv. campestris , X. campestris pv. incanae, and X. campestris pv. raphani, [8] but still included a small number of other pathovars like X. campestris pv. plantaginis and X. campestris pv. papavericola.

Further investigation of pathogenicity profiles and multilocus sequencing typing suggested that the list could be narrowed down to just three main pathovars with the different symptoms being black rot, leaf spot, and bacterial blight. [8] Both, X. campestris pv. campestris (known for causing black rot of crucifers) and X. campestris pv. incanae (known for causing bacterial blight of garden stocks) are vascular pathogens, and they have been found to invade the plant host through wounds or hydathodes. Xanthomonas campestris pv. campestris also has some limited ability to infect the plant host through the stomata. Xanthomonas pv. raphani has been found to enter the plant through its stomata to cause infection of the tissue, or rather parenchyma. This results in bacterial spot on a wider range of hosts, which includes both crucifers and certain solanaceous plants. [1] [8] [9]

Phytopathology

Relationships between Xanthomonas campestris bacteria and plants can be both compatible and incompatible. It is in the compatible relationships, where the bacteria are able to overcome the host's defenses, rather than experience attenuated growth, that disease symptoms will be seen in the plants. [3] This is due to toxins, extracellular enzymes (exported by the type II secretion system), polysaccharides, lipopolysaccharides, a fatty acid-dependent cell-cell communication system, and proteins (secreted by the type III secretion system), for example. [1] The genes in the bacterial genome that are responsible for such interactions include avirulence (avr) and hypersensitivity response and pathogenicity (hrp) genes. [3]

Gene-for-gene patterns control the interactions between the Xanthomonas campestris, a bacterial pathogen, and plants. Avr genes are a group of genes that impact the specificity of the interaction between the bacteria and the plant host. When either these bacterial genes or a plant's resistance genes to the pathogen are not present, the interaction will result in disease. Alternatively, when the genes are present, the plant's resistance genes will produce a product that is able to recognize the avr genes of the bacteria, which allows for the plant host to have resistance. [3] Hrp genes are responsible for the determination of the outcome of the interaction between the plant and bacteria. When mutation occurs within these genes, there is impact on both compatible and incompatible interactions. This is the case because there may be an impact on pathogenicity and hypersensitivity response, respectively. [3] Therefore, the plant's ability to limit the spread of the microbial pathogen may be inhibited.

The regulation of pathogenicity factors (rpf) gene cluster also plays an important role in the plant-bacteria interactions by encoding for a cell-cell signaling system involving diffusible signal factor that is necessary for full virulence. This regulation system is involved in the regulation of both the formation and dispersal of Xanthomonas campestris biofilms, which is specifically related to the rpfB and rpfF genes within the cluster. [1] [4] With a mutation in the rpf genes, the synthesis of various extracellular enzymes will be downregulated. This includes endoglucanase, protease, and extracellular polysaccharide (EPS) xanthan, for example, which are important to the virulence of the bacteria. [4]

Xanthomonas lifecycle and infection cycle in plants. Xanthomonas-cycle.jpg
Xanthomonas lifecycle and infection cycle in plants.

Like with Xanthomonas species in general, the primary route of transmission for Xanthomonas campestris is through seeds, which act as the source of inoculum. [3] [2] Therefore, the bacteria are initially in the epiphytic stage of the infection cycle, which is when they grow on the surface of the plant, such as on the aerial tissues of leaves and fruit. Various adhesion strategies are utilized by the microbes in order to remain attached to the plant surfaces, and this includes bacterial surface polysaccharides, adhesion proteins, and type IV pili. [2] Then, biofilm matrices composed primarily of xanthan will form, which will help the bacteria to survive in the harsh abiotic conditions of the plant surfaces. These biofilms, along with pigments, also help the bacteria to survive the potential damages to DNA and membrane that result from radiation and light. Eventually, the bacteria enter the host tissue through natural openings such as pores and stomata, or wounds, which is hypothesized to be a result of chemotaxis. [2] When this happens, the endophytic stage has been reached and colonization in the vascular system or parenchyma takes place. This is when the development of symptoms, such as lesions of leaves, will occur. [2] Progression into the stem and roots can eventually happen as well, which is when there is systematic infection of the plant. Furthermore, Xanthomonas campestris can be spread to other plants when the population of bacteria has increased enough that they emerge on the plant surfaces again. This dispersal includes both environmental and mechanical routes, such as through wind, rain, people, non-specific vectors, seed dispersal, etc. [2]

Industrial applications

Chemical structure of xanthan gum. Xanthan.svg
Chemical structure of xanthan gum.

Xanthomonas campestris is commonly used industrially to produce a water-soluble exo-polysaccharide, known as xanthan gum, from fermentation of carbon sources like glucose. [5] In this process, a preserved culture of the gram-negative bacterium is expanded through growth and then used as an inoculum in bioreactors with liquid growth media. Under select modes of operation, such as batch fermentation, and proper growth conditions, fermentation then takes place. Therefore, as the microorganism grows, there is production of xanthan, which is secreted from the bacterial cells and ultimately recovered from the media and purified using alcohol precipitation techniques. [5]

This product is particularly applicable to the food industry as a suspending, thickening, and stabilizing agent. However, it also has applications pertaining to the agricultural industry, the oil industry, the pharmaceutical industry, etc. [5] Because of that, work is being done to investigate advancements that can be made to the current xanthan gum production processes.     

Related Research Articles

<span class="mw-page-title-main">Biofilm</span> Aggregation of bacteria or cells on a surface

A biofilm is an syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

<span class="mw-page-title-main">Citrus canker</span> Species of bacterium

Citrus canker is a disease affecting Citrus species caused by the bacterium Xanthomonas. Infection causes lesions on the leaves, stems, and fruit of citrus trees, including lime, oranges, and grapefruit. While not harmful to humans, canker significantly affects the vitality of citrus trees, causing leaves and fruit to drop prematurely; a fruit infected with canker is safe to eat, but too unsightly to be sold. Citrus canker is mainly a leaf-spotting and rind-blemishing disease, but when conditions are highly favorable, it can cause defoliation, shoot dieback, and fruit drop.

<i>Burkholderia cenocepacia</i> Species of bacterium

Burkholderia cenocepacia is a Gram-negative, rod-shaped bacterium that is commonly found in soil and water environments and may also be associated with plants and animals, particularly as a human pathogen. It is one of over 20 species in the Burkholderia cepacia complex (Bcc) and is notable due to its virulence factors and inherent antibiotic resistance that render it a prominent opportunistic pathogen responsible for life-threatening, nosocomial infections in immunocompromised patients, such as those with cystic fibrosis or chronic granulomatous disease. The quorum sensing systems CepIR and CciIR regulate the formation of biofilms and the expression of virulence factors such as siderophores and proteases. Burkholderia cenocepacia may also cause disease in plants, such as in onions and bananas. Additionally, some strains serve as plant growth-promoting rhizobacteria.

The gene-for-gene relationship is a concept in plant pathology that plants and their diseases each have single genes that interact with each other during an infection. It was proposed by Harold Henry Flor who was working with rust (Melampsora lini) of flax (Linum usitatissimum). Flor showed that the inheritance of both resistance in the host and parasite ability to cause disease is controlled by pairs of matching genes. One is a plant gene called the resistance (R) gene. The other is a parasite gene called the avirulence (Avr) gene. Plants producing a specific R gene product are resistant towards a pathogen that produces the corresponding Avr gene product. Gene-for-gene relationships are a widespread and very important aspect of plant disease resistance. Another example can be seen with Lactuca serriola versus Bremia lactucae.

<i>Pseudomonas syringae</i> Species of bacterium

Pseudomonas syringae is a rod-shaped, Gram-negative bacterium with polar flagella. As a plant pathogen, it can infect a wide range of species, and exists as over 50 different pathovars, all of which are available to researchers from international culture collections such as the NCPPB, ICMP, and others.

<i>Xanthomonas</i> Genus of bacteria

Xanthomonas is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated Xanthomonas spp., that all together infect at least 400 plant species. Different species typically have specific host and/or tissue range and colonization strategies.

<i>Xanthomonas vasicola</i> Species of bacterium

Xanthomonas vasicola pv. vasculorum (Xvv) is a gram-negative rod-shaped bacterium which has a single polar flagellum. It is a plant pathogen, causing both bacterial leaf streak of maize (corn) and sugarcane gumming disease. One outbreak in eucalyptus has been reported. Under experimental conditions it can infect sorghum, oats and some grass species. It is not currently a quarantine pathogen in any country, but it has already spread outside its native range and is highly adaptable to different environments.

<span class="mw-page-title-main">Extracellular polymeric substance</span> Gluey polymers secreted by microorganisms to form biofilms

Extracellular polymeric substances (EPSs) are natural polymers of high molecular weight secreted by microorganisms into their environment. EPSs establish the functional and structural integrity of biofilms, and are considered the fundamental component that determines the physicochemical properties of a biofilm. EPS in the matrix of biofilms provides compositional support and protection of microbial communities from the harsh environments. Components of EPS can be of different classes of polysaccharides, lipids, nucleic acids, proteins, lipopolysaccharides, and minerals.

Black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), is considered the most important and most destructive disease of crucifers, infecting all cultivated varieties of brassicas worldwide. This disease was first described by botanist and entomologist Harrison Garman in Lexington, Kentucky, US in 1889. Since then, it has been found in nearly every country in which vegetable brassicas are commercially cultivated.

sRNA-Xcc1 is a family of trans-acting non-coding RNA. Homologs of sRNA-Xcc1 are found in a few bacterial strains belonging to alpha-proteobacteria, beta-proteobacteria, gamma-proteobacteria, and delta-proteobacteria. In Xanthomonascampestris pv. campestris, sRNA-Xcc1 is encoded by an integron gene cassette and is under the positive control of the virulence regulators HrpG and HrpX.

In molecular biology, Xanthomonas sRNA are small RNAs which have been identified in various species of the bacterium Xanthomonas.

<i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Species of bacterium

Xanthomonas campestris pv. vesicatoria is a bacterium that causes bacterial leaf spot (BLS) on peppers and tomatoes. It is a gram-negative and rod-shaped. It causes symptoms throughout the above-ground portion of the plant including leaf spots, fruit spots and stem cankers. Since this bacterium cannot live in soil for more than a few weeks and survives as inoculum on plant debris, removal of dead plant material and chemical applications to living plants are considered effective control mechanisms.

Bacterial blight of cotton is a disease affecting the cotton plant resulting from infection by Xanthomonas axonopodis pathovar malvacearum (Xcm) a Gram negative, motile rod-shaped, non spore-forming bacterium with a single polar flagellum

Xanthomonas axonopodis pv. manihotis is the pathogen that causes bacterial blight of cassava. Originally discovered in Brazil in 1912, the disease has followed the cultivation of cassava across the world. Among diseases which afflict cassava worldwide, bacterial blight causes the largest losses in terms of yield.

<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Variety of bacteria

Xanthomonas oryzae pv. oryzae is a bacterial pathovar that causes a serious blight of rice, other grasses, and sedges.

Xanthomonas campestris pv. juglandis is an anaerobic, Gram negative, rod-shaped bacteria that can affect walnut trees though the flowers, buds, shoots, branches, trunk, and fruit. It can have devastating effects including premature fruit drop and lesions on the plant. This pathogen was first isolated by Newton B. Pierce in California in 1896 and was then named Pseudomonas juglandis. In 1905 it was reclassified as Bacterium juglandis, in 1930 it became Phytomas juglandis, and in 1939 it was named Xanthomas juglandis. The International Standards for Naming Pathovars declared it to be named Xanthomonas campestris pv. juglandis in 1980. There have been recent proposals to change the name once again to Xanthomonas arboricola pv. juglandis, but this has not yet been universally accepted.

Subhadeep Chatterjee is an Indian molecular biologist and a scientist at the Centre for DNA Fingerprinting and Diagnostics (CDFD). A member of Guha Research Conference, he is known for his studies on plant-microbe interactions and heads the Lab of Plant-Microbe Interactions at CDFD where he hosts several researchers.

Xanthoferrin is an α-hydroxycarboxylate-type of siderophore produced by xanthomonads. Xanthomonas spp. secrete xanthoferrin to chelate iron under low-iron conditions. The xanthoferrin siderophore mediated iron uptake supports bacterial growth under iron-restricted environment.

Diffusible signal factor (DSF) is found in several gram-negative bacteria and play a role in the formation of biofilms, motility, virulence, and antibiotic resistance. Xanthomonas campestris was the first bacteria known to have DSF. The synthesis of the DSF can be seen in rpfF and rpfB enzymes. An understanding of the DSF signaling mechanism could lead to further disease control.

<span class="mw-page-title-main">Xanthomonas campestris pv. raphani</span>

Xanthomonas campestris pv. raphani is a gram-negative, obligate aerobic bacterium that like many other Xanthomonas spp. bacteria has been found associated with plants. This organism is closely related with Xanthomonas campestris pv. campestris, but causes a non-vascular leaf spot disease that is clearly distinct from black rot of brassicas.

References

  1. 1 2 3 4 5 6 7 Tang, Ji-liang; Tang, Dong-Jie; Dubrow, Zoe E.; Bogdanove, Adam; An, Shi-qi (February 2021). "Xanthomonas campestris Pathovars". Trends in Microbiology. 29 (2): 182–183. doi:10.1016/j.tim.2020.06.003. ISSN   0966-842X. PMID   32616307. S2CID   220327771.
  2. 1 2 3 4 5 6 7 An, Shi-Qi; Potnis, Neha; Dow, Max; Vorhölter, Frank-Jörg; He, Yong-Qiang; Becker, Anke; Teper, Doron; Li, Yi; Wang, Nian; Bleris, Leonidas; Tang, Ji-Liang (2020-01-01). "Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas". FEMS Microbiology Reviews. 44 (1): 1–32. doi:10.1093/femsre/fuz024. ISSN   0168-6445. PMC   8042644 . PMID   31578554.
  3. 1 2 3 4 5 6 7 Chan, James W. Y. F; Goodwin, Paul H (1999-11-01). "The molecular genetics of virulence of Xanthomonas campestris". Biotechnology Advances. 17 (6): 489–508. doi:10.1016/S0734-9750(99)00025-7. ISSN   0734-9750. PMID   14538126.
  4. 1 2 3 Crossman, Lisa; Dow, J. Maxwell (2004-05-01). "Biofilm formation and dispersal in Xanthomonas campestris". Microbes and Infection. 6 (6): 623–629. doi:10.1016/j.micinf.2004.01.013. ISSN   1286-4579. PMID   15158198.
  5. 1 2 3 4 Palaniraj, Aarthy; Jayaraman, Vijayakumar (2011-09-01). "Production, recovery and applications of xanthan gum by Xanthomonas campestris". Journal of Food Engineering. 106 (1): 1–12. doi:10.1016/j.jfoodeng.2011.03.035. ISSN   0260-8774.
  6. Vauteri, L.; Hoste, B.; Kersters, K.; Swings, J. (1995). "Reclassification of Xanthomonas". International Journal of Systematic and Evolutionary Microbiology. 45 (3): 472–489. doi: 10.1099/00207713-45-3-472 . ISSN   1466-5034.
  7. Harrison, Jamie; Hussain, Rana M. F.; Aspin, Andrew; Grant, Murray R.; Vicente, Joana G.; Studholme, David J. (March 2023). "Phylogenomic Analysis Supports the Transfer of 20 Pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria". Taxonomy. 3 (1): 29–45. doi: 10.3390/taxonomy3010003 . ISSN   2673-6500.
  8. 1 2 3 Fargier, E.; Saux, M. Fischer-Le; Manceau, C. (2011-04-01). "A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species". Systematic and Applied Microbiology. 34 (2): 156–165. doi:10.1016/j.syapm.2010.09.001. ISSN   0723-2020. PMID   21193279.
  9. Vicente, J. G.; Everett, B.; Roberts, S. J. (July 2006). "Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars". Phytopathology. 96 (7): 735–745. doi:10.1094/PHYTO-96-0735. ISSN   0031-949X. PMID   18943147.

Further reading