(S)-mandelate dehydrogenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.1.99.31 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
In enzymology, (S)-mandelate dehydrogenase (EC 1.1.99.31) (MDH), is an enzyme that catalyzes the chemical reaction.
+ acceptor | = | + reduced acceptor |
---|---|---|
(S)-Mandelate | 2-oxo-2-phenylacetate | |
(S)-2-hydroxy-2-phenylacetate + acceptor ⇌ 2-oxo-2-phenylacetate + reduced acceptor |
Thus, the two substrates of this enzyme are (S)-2-hydroxy-2-phenylacetate and acceptor, whereas its two products are 2-oxo-2-phenylacetate and reduced acceptor.
This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with other acceptors. The systematic name of this enzyme class is (S)-2-hydroxy-2-phenylacetate:acceptor 2-oxidoreductase.
This enzyme transfers the electron pair from FMNH2 to a component of the electron transport chain, most probably ubiquinone [1,2]. It is part of a metabolic pathway in Pseudomonads that allows these organisms to utilize mandelic acid, derivatized from the common soil metabolite amygdalin, as the sole source of carbon and energy. The enzyme has a large active-site pocket and preferentially binds substrates with longer sidechains, e.g. 2-hydroxyoctanoate rather than 2-hydroxybutyrate. It also prefers substrates that, like (S)-mandelate, have beta unsaturation, e.g. (indol-3-yl)glycolate compared with (indol-3-yl)lactate. Esters of mandelate, such as methyl (S)-mandelate, are also substrates. [1]
(S)-mandelate dehydrogenase is also knows as: L-mandelate dehydrogenase, L-MDH, MDH, SManDH, and SMDH. [1]
D-amino-acid dehydrogenase is a bacterial enzyme that catalyses the oxidation of D-amino acids into their corresponding oxoacids. It contains both flavin and nonheme iron as cofactors. The enzyme has a very broad specificity and can act on most D-amino acids.
In enzymology, an indolelactate dehydrogenase (EC 1.1.1.110) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3alpha(or 20beta)-hydroxysteroid dehydrogenase (EC 1.1.1.53) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-hydroxy-2-methylbutyryl-CoA dehydrogenase (EC 1.1.1.178) is an enzyme that catalyzes the chemical reaction
In enzymology, a 2-furoyl-CoA dehydrogenase (EC 1.3.99.8) is an enzyme that catalyzes the chemical reaction
In enzymology, a cis-dihydroethylcatechol dehydrogenase (EC 1.3.1.66) is an enzyme that catalyzes the chemical reaction
In enzymology, a quinoline 2-oxidoreductase (EC 1.3.99.17) is an enzyme that catalyzes the chemical reaction
In enzymology, a mandelate 4-monooxygenase (EC 1.14.16.6) is an enzyme that catalyzes the chemical reaction
In enzymology, a quinoprotein glucose dehydrogenase is an enzyme that catalyzes the chemical reaction
In enzymology, a benzaldehyde dehydrogenase (NADP+) (EC 1.2.1.7) is an enzyme that catalyzes the chemical reaction
In enzymology, a (R)-dehydropantoate dehydrogenase (EC 1.2.1.33) is an enzyme that catalyzes the chemical reaction
In enzymology, a tryptophan 2-monooxygenase (EC 1.13.12.3) is an enzyme that catalyzes the chemical reaction
Methanol dehydrogenase (cytochrome c) (EC 1.1.2.7, methanol dehydrogenase, MDH) is an enzyme with systematic name methanol:cytochrome c oxidoreductase. This enzyme catalyses the following chemical reaction
Alcohol dehydrogenase (azurin) (EC 1.1.9.1, type II quinoprotein alcohol dehydrogenase, quinohaemoprotein ethanol dehydrogenase, QHEDH, ADHIIB) is an enzyme with systematic name alcohol:azurin oxidoreductase. This enzyme catalyses the following chemical reaction
2-Hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85, xylG [gene], praB [gene] ) is an enzyme with systematic name (2E,4Z)-2-hydroxy-6-oxohexa-2,4-dienoate:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction
Short-chain acyl-CoA dehydrogenase is an enzyme with systematic name short-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase. This enzyme catalyses the following chemical reaction
Aralkylamine dehydrogenase (azurin) (EC 1.4.9.2, aromatic amine dehydrogenase, arylamine dehydrogenase, tyramine dehydrogenase) is an enzyme with the systematic name aralkylamine:azurin oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction:
6-hydroxy-3-succinoylpyridine 3-monooxygenase (EC 1.14.13.163, 6-hydroxy-3-succinoylpyridine hydroxylase, hspA (gene), hspB (gene)) is an enzyme with systematic name 4-(6-hydroxypyridin-3-yl)-4-oxobutanoate,NADH:oxygen oxidoreductase (3-hydroxylating, succinate semialdehyde releasing). This enzyme catalyses the following chemical reaction
In enzymology, a D-2-hydroxyglutarate dehydrogenase is an enzyme that catalyzes the chemical reaction
Phenylacetyl-CoA (C29H42N7O17P3S) is a form of acetyl-CoA formed from the condensation of the thiol group from coenzyme A with the carboxyl group of phenylacetic acid.