4-Hydroxybutyrate dehydrogenase

Last updated
4-hydroxybutyrate dehydrogenase
3pdu.jpg
Identifiers
EC no. 1.1.1.61
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a 4-hydroxybutyrate dehydrogenase (EC 1.1.1.61) is an enzyme that catalyzes the chemical reaction

4-hydroxybutanoate + NAD+ succinate semialdehyde + NADH + H+

The two substrates of this enzyme are therefore 4-hydroxybutanoic acid, and NAD+, whereas its 3 products are succinate semialdehyde, NADH, and H+.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. [1] The systematic name of this enzyme class is 4-hydroxybutanoate:NAD+ oxidoreductase. This enzyme is also called gamma-hydroxybutyrate dehydrogenase. This enzyme participates in butanoate metabolism and the degradation of the neurotransmitter 4-hydroxybutanoic acid. [2]

Related Research Articles

<span class="mw-page-title-main">Succinate-semialdehyde dehydrogenase</span>

In enzymology, a succinate-semialdehyde dehydrogenase (SSADH) (EC 1.2.1.24) is an enzyme that catalyzes the chemical reaction

In enzymology, a benzyl-2-methyl-hydroxybutyrate dehydrogenase (EC 1.1.1.217) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-hydroxyacyl-CoA dehydrogenase</span> Enzyme

In enzymology, a 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) is an enzyme that catalyzes the chemical reaction

In enzymology, 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) is an enzyme that catalyzes the chemical reaction:

In enzymology, a 4-hydroxymuconic-semialdehyde dehydrogenase (EC 1.2.1.61) is an enzyme that catalyzes the chemical reaction

In enzymology, a 5-carboxymethyl-2-hydroxymuconic-semialdehyde dehydrogenase (EC 1.2.1.60) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aminomuconate-semialdehyde dehydrogenase</span>

In enzymology, an aminomuconate-semialdehyde dehydrogenase (EC 1.2.1.32) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aspartate-semialdehyde dehydrogenase</span> Amino-acid-synthesizing enzyme in fungi, plants and prokaryota

In enzymology, an aspartate-semialdehyde dehydrogenase is an enzyme that is very important in the biosynthesis of amino acids in prokaryotes, fungi, and some higher plants. It forms an early branch point in the metabolic pathway forming lysine, methionine, leucine and isoleucine from aspartate. This pathway also produces diaminopimelate which plays an essential role in bacterial cell wall formation. There is particular interest in ASADH as disabling this enzyme proves fatal to the organism giving rise to the possibility of a new class of antibiotics, fungicides, and herbicides aimed at inhibiting it.

In enzymology, a glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">L-aminoadipate-semialdehyde dehydrogenase</span>

In enzymology, a L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) is an enzyme that catalyzes the chemical reaction

In enzymology, a malonate-semialdehyde dehydrogenase (EC 1.2.1.15) is an enzyme that catalyzes the chemical reaction

In enzymology, a malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Methylmalonate-semialdehyde dehydrogenase (acylating)</span> Class of enzymes

In enzymology, a methylmalonate-semialdehyde dehydrogenase (acylating) (EC 1.2.1.27) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38) is an enzyme that catalyzes the chemical reaction

In enzymology, a succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16) is an enzyme that catalyzes the chemical reaction

In enzymology, a 1-pyrroline-5-carboxylate dehydrogenase (EC 1.2.1.88) is an enzyme that catalyzes the chemical reaction

In enzymology, a saccharopine dehydrogenase (NAD+, L-glutamate-forming) (EC 1.5.1.9) is an enzyme that catalyzes the chemical reaction

3-hydroxypropionate dehydrogenase (NADP+) (EC 1.1.1.298) is an enzyme with systematic name 3-hydroxypropionate:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

Succinate-semialdehyde dehydrogenase (acylating) (EC 1.2.1.76, succinyl-coA reductase, coenzyme-A-dependent succinate-semialdehyde dehydrogenase) is an enzyme with systematic name succinate semialdehyde:NADP+ oxidoreductase (CoA-acylating). This enzyme catalyses the following chemical reaction

Succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79, succinic semialdehyde dehydrogenase (NADP+), succinyl semialdehyde dehydrogenase (NADP+), succinate semialdehyde:NADP+ oxidoreductase, NADP-dependent succinate-semialdehyde dehydrogenase, GabD) is an enzyme with systematic name succinate-semialdehyde:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

References

  1. Nirenberg MW, Jakoby WB (1960). "Enzymatic utilization of gamma-hydroxybutyric acid". J. Biol. Chem. 235: 954–960. PMID   14427301.
  2. Kaufman EE, Nelson T (1991). "An overview of gamma-hydroxybutyrate catabolism: the role of the cytosolic NADP+-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway". Neurochem. Res. 16 (9): 965–974. doi:10.1007/BF00965839. PMID   1784339.