6-hydroxyhexanoate dehydrogenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.1.1.258 | ||||||||
CAS no. | 77000-03-4 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
In enzymology, a 6-hydroxyhexanoate dehydrogenase (EC 1.1.1.258) is an enzyme that catalyzes the chemical reaction
Thus, the two substrates of this enzyme are 6-hydroxyhexanoate and NAD+, whereas its 3 products are 6-oxohexanoate, NADH, and H+.
This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is 6-hydroxyhexanoate:NAD+ oxidoreductase. This enzyme participates in caprolactam degradation.
Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.
In enzymology, a carnitine 3-dehydrogenase (EC 1.1.1.108) is an enzyme that catalyzes the chemical reaction
In enzymology, a cyclohexanol dehydrogenase (EC 1.1.1.245) is an enzyme that catalyzes the chemical reaction
In enzymology, a L-threonine 3-dehydrogenase (EC 1.1.1.103) is an enzyme that catalyzes the chemical reaction
Hydroxyprostaglandin dehydrogenase 15-(NAD) (the HUGO-approved symbol = HPGD; HGNC ID, HGNC:5154), also called 15-hydroxyprostaglandin dehydrogenase (NAD+), (EC 1.1.1.141), is an enzyme that catalyzes the following chemical reaction:
In enzymology, 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) is an enzyme that catalyzes the chemical reaction:
In enzymology, a (R)-3-hydroxyacid-ester dehydrogenase (EC 1.1.1.279) is an enzyme that catalyzes the chemical reaction
In enzymology, a (S)-3-hydroxyacid-ester dehydrogenase (EC 1.1.1.280) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-hydroxyphenylacetate 6-hydroxylase (EC 1.14.13.63) is an enzyme that catalyzes the chemical reaction
In enzymology, a 6-oxohexanoate dehydrogenase (EC 1.2.1.63) is an enzyme that catalyzes the chemical reaction
In enzymology, an aminomuconate-semialdehyde dehydrogenase (EC 1.2.1.32) is an enzyme that catalyzes the chemical reaction
In enzymology, a rubredoxin-NAD+ reductase (EC 1.18.1.1) is an enzyme that catalyzes the chemical reaction.
In enzymology, a cystine reductase (EC 1.8.1.6) is an enzyme that catalyzes the chemical reaction
In enzymology, a L-erythro-3,5-diaminohexanoate dehydrogenase (EC 1.4.1.11) is an enzyme that catalyzes the chemical reaction
In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction
In enzymology, a NAD(P)+ transhydrogenase (Re/Si-specific (EC 1.6.1.2) is an enzyme that catalyzes the chemical reaction
In enzymology, a nitrite reductase [NAD(P)H] (EC 1.7.1.4) is an enzyme that catalyzes the chemical reaction
In enzymology, a saccharopine dehydrogenase (NAD+, L-lysine-forming) (EC 1.5.1.7) is an enzyme that catalyzes the chemical reaction
Lysine 6-dehydrogenase (EC 1.4.1.18, L-lysine epsilon-dehydrogenase, L-lysine 6-dehydrogenase, LysDH) is an enzyme with systematic name L-lysine:NAD+ 6-oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction
NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction: