ARGOS (satellite)

Last updated

ARGOS
ARGOS experiment.png
Artist's rendition of ARGOS
Mission typeSpace environment
Operator AFRL
NRL
STP
COSPAR ID 1999-008A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 25634
Mission duration3 years (planned)
4.5 years (achieved)
Spacecraft properties
Bus ARGOS
Manufacturer Boeing
Launch mass2,450 kg (5,400 lb)
Start of mission
Launch date23 February 1999, 10:29:55 UTC
Rocket Delta II 7920-10
Launch site Vandenberg, SLC-2W
Contractor Boeing
End of mission
Last contact31 July 2003
Orbital parameters
Reference system Geocentric orbit [1]
Regime Sun-synchronous orbit
Perigee altitude 828 km (514 mi)
Apogee altitude 842 km (523 mi)
Inclination 98.78°
Period 101.47 minutes
ARGOS Mission Patch.jpeg
ARGOS mission patch  

The Advanced Research and Global Observation Satellite (ARGOS) was launched on 23 February 1999 carrying nine payloads for research and development missions by nine separate researchers. The mission terminated on 31 July 2003.

Contents

ARGOS was launched from SLC-2W, Vandenberg Air Force Base, California, atop a Boeing Delta II (7920-10) launch vehicle. Construction of the spacecraft bus and integration of the satellite's payloads was accomplished by Boeing at their Seal Beach, California facility. The program was funded and led by the DoD's Space Test Program (STP) as mission P91-1 (the first STP mission contract awarded in 1991).

The US$220 million mission was operated by Air Force Space Command's Space and Missile Systems Center's Test and Evaluation Directorate (then Space Development and Test Wing, now SMC's Advanced Systems and Development Directorate) [2] from their RDT&E Support Complex (RSC) at Kirtland Air Force Base, New Mexico. ARGOS was the first mission operated 100% from the new state-of-the-art, commercial-off-the-shelf Kirtland facility; all previous SMC satellite missions had been operated in total or at least in part from the preceding center at Onizuka Air Force Station, California.

Mission

ARGOS (also called STP mission P91-1) was a DoD research and development satellite mission, managed by the Space and Missile Systems Center Space Division at Kirtland AFB (SMC/TE), Albuquerque, NM. It was part of the USAF Space Test Program (STP) [3] with the objective to demonstrate several new space technologies and to fly payloads for global Earth sensing and celestial observations. [4]

The ARGOS had a design life of three years and was part of the DoD Space Test Program (STP), which supports the Air Force, Army, Navy, BMDO (now MDA), NASA, and various international space agencies. The nine ARGOS payloads, addressing more than 30 research objectives, conducted upper atmospheric observations and technology demonstrations. These included sensor technology for the International Space Station (ISS), as well as three high-priority ultraviolet imaging experiments and an X-ray sensor. The remaining experiments investigate ion propulsion, gas ionization physics, plume detection capabilities, and orbital debris. As part of DOD STP, ARGOS served the need to fly Department of Defense payloads that cannot be flown on the Space Shuttle or aboard small launch vehicles due to complexity, size, mission duration, or other constraints. The Naval Research Laboratory (NRL), U.S. Army Space and Strategic Defense Command, Air Force Research Laboratory, and Office of Naval Research have provided payloads for the ARGOS mission. [5]

Per the Kirtland AFB mission control center, "As of 1500 Zulu on 31 July 2003, support of all ARGOS operations has been terminated. Decaying inertial reference units has led to a tumble of the aircraft. As a result, communications with the spacecraft have been lost".

The satellite was designed to operate in a Sun-synchronous orbit and many of the payloads required unique Sun-angles, and so the orbit was creatively designed by Robert Cleave to operate without the need for an on-board propulsion subsystem, which was later identified as a key winning strategy.

Payloads

ARGOS was built at Boeing's Seal Beach California facility and, at the time, was the largest and most sophisticated research and development satellite that Boeing had ever developed for the U.S. Air Force. [6]

The satellite included a range of sensors and experiments that were sponsored and furnished by various organizations within the U.S. space commununity. The selection of experiments was adjudicated through the DoD Selective Experiments Review Board (SERB) process. [7] Experiments and sponsors are identified below:

Bus characteristics

P91-1 ARGOS [6] Mission Book.

Orbit characteristics

Liftoff postponements

After about six weeks stacked on the launch pad, and as long for mission crews to report only to replan activities for another night and slightly different time, the rocket and its satellites blasted away from Earth's pull. [15]

Secondary satellites launched with ARGOS

As the launching of the ARGOS satellite did not require the full payload capacity of its launching rocket, Delta II, there was room left in the payload-mass-budget of the launch vehicle and thus two secondary satellites were added to, and launched on, the same rocket on 23 February 1999. NASA sponsored the secondary satellites, Ørsted (SSC #25635) [31] and SUNSAT (SSC #25636), [32] which were the first satellites of their respective countries, Denmark and South Africa.

See also

Related Research Articles

<span class="mw-page-title-main">Marshall Space Flight Center</span> Rocketry and spacecraft propulsion research center

The George C. Marshall Space Flight Center (MSFC), located in Redstone Arsenal, Alabama, is the U.S. government's civilian rocketry and spacecraft propulsion research center. As the largest NASA center, MSFC's first mission was developing the Saturn launch vehicles for the Apollo program. Marshall has been the lead center for the Space Shuttle main propulsion and external tank; payloads and related crew training; International Space Station (ISS) design and assembly; computers, networks, and information management; and the Space Launch System. Located on the Redstone Arsenal near Huntsville, MSFC is named in honor of General of the Army George C. Marshall.

<span class="mw-page-title-main">STS-39</span> 1991 American crewed spaceflight for the Department of Defense

STS-39 was the twelfth mission of the NASA Space Shuttle Discovery, and the 40th orbital shuttle mission overall. The primary purpose of the mission was to conduct a variety of payload experiments for the U.S. Department of Defense (DoD).

<span class="mw-page-title-main">National Security Space Launch</span> Expendable launch system program of the United States Space Force

National Security Space Launch (NSSL) is a program of the United States Space Force (USSF) intended to assure access to space for United States Department of Defense and other United States government payloads. The program is managed by the Assured Access to Space Directorate (SSC/AA) of the Space Force's Space Systems Command (SSC), in partnership with the National Reconnaissance Office.

<span class="mw-page-title-main">Northrop Grumman Pegasus</span> Air-launched rocket

Pegasus is an air-launched launch vehicle developed by Orbital Sciences Corporation (OSC) and now built and launched by Northrop Grumman. Pegasus is the world's first privately developed orbital launch vehicle. Capable of carrying small payloads of up to 443 kg (977 lb) into low Earth orbit, Pegasus first flew in 1990 and remains active as of 2021. The vehicle consists of three solid propellant stages and an optional monopropellant fourth stage. Pegasus is released from its carrier aircraft at approximately 12,000 m (39,000 ft), and its first stage has a wing and a tail to provide lift and altitude control while in the atmosphere. Notably, the first stage does not have a thrust vector control (TVC) system.

<span class="mw-page-title-main">Boeing X-37</span> Reusable robotic spaceplane

The Boeing X-37, also known as the Orbital Test Vehicle (OTV), is a reusable robotic spacecraft. It is boosted into space by a launch vehicle, then re-enters Earth's atmosphere and lands as a spaceplane. The X-37 is operated by the Department of the Air Force Rapid Capabilities Office, in collaboration with United States Space Force, for orbital spaceflight missions intended to demonstrate reusable space technologies. It is a 120-percent-scaled derivative of the earlier Boeing X-40. The X-37 began as a NASA project in 1999, before being transferred to the United States Department of Defense in 2004. Until 2019, the program was managed by Air Force Space Command.

In aerospace engineering, spin stabilization is a method of stabilizing a satellite or launch vehicle by means of spin, i.e. rotation along the longitudinal axis. The concept originates from conservation of angular momentum as applied to ballistics, where the spin is commonly obtained by means of rifling. For most satellite applications this approach has been superseded by three-axis stabilization.

<span class="mw-page-title-main">FalconSAT</span> Program within the United States Air Force Academy for building small satellites

FalconSAT is the United States Air Force Academy's (USAFA) small satellite engineering program. Satellites are designed, built, tested, and operated by Academy cadets. The project is administered by the USAFA Space Systems Research Center under the direction of the Department of Astronautics. Most of the cadets who work on the project are pursuing a bachelor of science degree in astronautical engineering, although students from other disciplines join the project.

<span class="mw-page-title-main">United Launch Alliance</span> Joint venture of Lockheed Martin and Boeing

United Launch Alliance, LLC, commonly referred to as ULA, is an American aerospace manufacturer, defense contractor and launch service provider that manufactures and operates rockets that launch spacecraft into Earth orbit and on trajectories to other bodies in the Solar System. ULA also designed and builds the Interim Cryogenic Propulsion Stage for the Space Launch System (SLS).

The Space Test Program (STP) is the primary provider of spaceflight for the United States Department of Defense (DoD) space science and technology community. STP is managed by a group within the Advanced Systems and Development Directorate, a directorate of the Space and Missile Systems Center of the United States Space Force. STP provides spaceflight via the International Space Station (ISS), piggybacks, secondary payloads and dedicated launch services.

<span class="mw-page-title-main">C/NOFS</span>

C/NOFS, or Communications/Navigation Outage Forecasting System was a USAF satellite developed by the Air Force Research Laboratory (AFRL) Space Vehicles Directorate to investigate and forecast scintillations in the Earth's ionosphere. It was launched by an Orbital Sciences Corporation Pegasus-XL launch vehicle at 17:02:48 UTC on 16 April 2008 and decayed on 28 November 2015.

<span class="mw-page-title-main">Minotaur IV</span> Space launch vehicle

Minotaur IV, also known as Peacekeeper SLV and OSP-2 PK is an active expendable launch system derived from the LGM-118 Peacekeeper ICBM. It is operated by Northrop Grumman Space Systems, and made its maiden flight on 22 April 2010, carrying the HTV-2a Hypersonic Test Vehicle. The first orbital launch occurred on 26 September 2010 with the SBSS satellite for the United States Air Force.

<span class="mw-page-title-main">Radio Aurora Explorer</span>

Radio Aurora Explorer (RAX) is the first National Science Foundation sponsored CubeSat mission. The RAX mission is a joint effort between SRI International in Menlo Park, California and the University of Michigan in Ann Arbor, Michigan. The chief scientist at SRI International, Dr. Hasan Bahcivan, led his team at SRI to develop the payload while the chief engineer, Dr. James Cutler, led a team of students to develop the satellite bus in the Michigan Exploration Laboratory. There are currently two satellites in the RAX mission.

<span class="mw-page-title-main">FASTSAT</span>

Fast, Affordable, Science and Technology Satellite-Huntsville 01 or FASTSAT-Huntsville 01 of the NASA. FASTSAT-HSV 01 was flying on the STP-S26 mission - a joint activity between NASA and the U.S. Department of Defense Space Test Program, or DoD STP. FASTSAT and all of its six experiments flying on the STP-S26 multi-spacecraft/payload mission have been approved by the Department of Defense Space and Experiments Review Board (USA-220).

<span class="mw-page-title-main">Space tether missions</span> Space technology using tethers

A number of space tethers have been deployed in space missions. Tether satellites can be used for various purposes including research into tether propulsion, tidal stabilisation and orbital plasma dynamics.

<span class="mw-page-title-main">Space tether</span> Type of tether

Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines.

The EELV Secondary Payload Adapter (ESPA) is an adapter for launching secondary payloads on orbital launch vehicles.

<span class="mw-page-title-main">Ionospheric Connection Explorer</span> NASA satellite of the Explorer program

Ionospheric Connection Explorer (ICON) is a satellite designed to investigate changes in the ionosphere of Earth, the dynamic region high in our atmosphere where terrestrial weather from below meets space weather from above. ICON studies the interaction between Earth's weather systems and space weather driven by the Sun, and how this interaction drives turbulence in the upper atmosphere. It is hoped that a better understanding of this dynamic will mitigate its effects on communications, GPS signals, and technology in general. It is part of NASA's Explorer program and is operated by University of California, Berkeley's Space Sciences Laboratory.

USA-221, also known as FalconSat-5, is an American military minisatellite, which was launched in 2010. The fifth FalconSat spacecraft to be launched, it carries four technology development and ionospheric research experiments. The satellite was constructed and is operated by the United States Air Force Academy.

<span class="mw-page-title-main">Green Propellant Infusion Mission</span> NASA satellite testing a new rocket fuel

The Green Propellant Infusion Mission (GPIM) was a NASA technology demonstrator project that tested a less toxic and higher performance/efficiency chemical propellant for next-generation launch vehicles and CubeSat spacecraft. When compared to the present high-thrust and high-performance industry standard for orbital maneuvering systems, which for decades, have exclusively been reliant upon toxic hydrazine based propellant formulations, the "greener" hydroxylammonium nitrate (HAN) monopropellant offers many advantages for future satellites, including longer mission durations, additional maneuverability, increased payload space and simplified launch processing. The GPIM was managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, and was part of NASA's Technology Demonstration Mission Program within the Space Technology Mission Directorate.

<span class="mw-page-title-main">SpaceX CRS-27</span> 2023 American resupply spaceflight to the ISS

SpaceX CRS-27, also known as SpX-27, was a Commercial Resupply Service mission to the International Space Station (ISS) launched on 15 March 2023. The mission was contracted by NASA and was flown by SpaceX using Cargo Dragon C209. This was the seventh flight for SpaceX under NASA's CRS Phase 2.

References

  1. Peat, Chris (5 December 2013). "ARGOS - Orbit". Heavens Above. Retrieved 6 December 2013.
  2. "SMC stands up new Advanced Systems and Development Directorate", 24 November 2014 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. Krebs, Gunter D. "Space Test Program (STP) Payloads". Gunter's Space Page. Retrieved 14 January 2023.
  4. "ARGOS (Advanced Research and Global Observation Satellite)". eoPortal.org. 31 May 2012. Retrieved 14 January 2023.
  5. Turner, J. B.; Agardy, F. J.; "The Advanced Research and Global Observation Satellite Program (ARGOS)", Space Programs and Technologies Conference, Huntsville, Alabama, September 27–29, 1994, AIAA-1994-4580.
  6. 1 2 "ARGOS Satellite Serves as Platform for Leading-Edge Technology and Research" (Press release). Boeing. 6 January 1999. Archived from the original on 22 September 2023.
  7. Braun, Barbara Manganis; Sims, Sam Myers; McLeroy, James; Brining, Ben. Breaking (Space) Barriers for 50 Years: The Past, Present, and Future of the DoD Space Test Program. 31st Annual AIAA/USU Conference on Small Satellites. SSC17-X-02. Archived from the original on 3 August 2023. Retrieved 14 January 2023.
  8. Lai, S.; Häggström, I.; Wannberg, G.; Westman, A.; Cooke, D.; Wright, L.; Groves, K.; and Pellinen-Wannberg, A.; "A Critical Ionization Velocity Experiment on the ARGOS Satellite", 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 8–11, 2007, AIAA-2007-279
  9. "New Space Propulsion System Fired" (Press release). Edwards Air Force Base: United States Air Force. 17 March 1999. Archived from the original on 15 November 2007.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. Sutton, A. M.; Bromaghim, D. R.; Johnson, L. K.; "Electric Propulsion Space Experiment (ESEX) Flight Qualification and Operations", Joint Propulsion Conference and Exhibit, 31st, San Diego, California, July 10–12, 1995, AIAA-1995-2503
  11. "New Space Propulsion System Fired". U.S. Air Force. 17 March 1999. Archived from the original on 15 November 2007. Retrieved 14 January 2023.
  12. "Extreme Ultraviolet Imaging Photometer (EUVIP)". NSSDCA Master Catalog. NASA. 1999-008A-02. Archived from the original on 7 November 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  13. "The USA Experiment". Naval Research Laboratory. 29 July 2004. Archived from the original on 27 October 2007. Retrieved 14 January 2023.
  14. "ARGOS Mission Seeks New Information about Black Holes and Neutron Stars". Standford Linear Accelerator Center. 4 March 1999. Archived from the original on 10 April 2023. Retrieved 14 January 2023.
  15. D. Seitz, Operations Lead, RDT&E Support Complex
  16. "Delta II Launch of ARGOS Satellite Scrubbed" (Press release). Boeing. 15 January 1999. 99-005. Archived from the original on 30 January 2023.
  17. "Launch of ARGOS Spacecraft Postponed" (Press release). Boeing. 16 January 1999. Archived from the original on 21 September 2023.
  18. "Delta II Launch of ARGOS Satellite Rescheduled for Wednesday" (Press release). Boeing. 19 January 1999. 99-009. Archived from the original on 30 January 2023.
  19. "Delta II Launch of ARGOS Satellite Postponed" (Press release). Boeing. 20 January 1999. 99-010. Archived from the original on 4 June 2023.
  20. "Weather Postpones Delta II Launch of ARGOS Satellite" (Press release). Boeing. 21 January 1999. 99-013. Archived from the original on 9 June 2023.
  21. "Upper Level Winds Postpone Delta II Launch of ARGOS Satellite" (Press release). Boeing. 22 January 1999. 99-014. Archived from the original on 24 September 2023.
  22. "Upper Level Winds Postpone Delta II Launch of ARGOS Satellite" (Press release). Boeing. 27 January 1999. 99-018. Archived from the original on 7 June 2023.
  23. "Delta II Launch Stopped Due to Engine Ignition Failure" (Press release). Boeing. 28 January 1999. 99-021. Archived from the original on 23 September 2023.
  24. "Next Delta II Launch Attempt of ARGOS Scheduled for Sunday" (Press release). Boeing. 4 February 1999. 99-023. Archived from the original on 31 May 2023.
  25. Team Memory: Frank and Earnest panel #70170 ran days after this attempt. We contacted the publisher and asked if they heard of our launch attempt; they said no, they just thought the word usage was funny. The Kirtland Air Force Base team purchased a copy of the panel with name ARGOS replacing NASA and gave them as momentoes to the Kirtland AFB launch and early orbit team
  26. "Delta II Launch of ARGOS Satellite Delayed" (Press release). Boeing. 7 February 1999. 99-025. Archived from the original on 26 September 2023.
  27. "Winds Postpone Delta II Launch of ARGOS Satellite" (Press release). Boeing. 12 February 1999. 99-029. Archived from the original on 6 June 2023.
  28. "Delta II Launch of ARGOS Satellite Delayed" (Press release). Boeing. 13 February 1999. 99-030. Archived from the original on 1 October 2023. Retrieved 12 November 2022.
  29. "Delta II Launch of ARGOS Satellite Scheduled for Tuesday" (Press release). Boeing. 19 February 1999. 99-031. Archived from the original on 27 May 2023.
  30. "Boeing News Release: Boeing Delta II Boosts Triple Satellite Payload" (Press release). Boeing. 23 February 1999. 99-032. Archived from the original on 1 June 2023. Retrieved 1 March 2023.
  31. "Oersted". NSSDCA Master Catalog. NASA. 1999-008B. Archived from the original on 5 November 2023.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  32. "Sunsat". NSSDCA Master Catalog. NASA. Archived from the original on 29 January 2023.PD-icon.svg This article incorporates text from this source, which is in the public domain .