Abieta-7,13-diene hydroxylase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.14.13.108 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
Abieta-7,13-diene hydroxylase (EC 1.14.13.108) is an enzyme with systematic name abieta-7,13-diene,NADPH:oxygen oxidoreductase (18-hydroxylating). [1] [2] This enzyme catalyses the following chemical reaction
Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.
Diterpenes are a class of terpenes composed of four isoprene units, often with the molecular formula C20H32. They are biosynthesized by plants, animals and fungi via the HMG-CoA reductase pathway, with geranylgeranyl pyrophosphate being a primary intermediate. Diterpenes form the basis for biologically important compounds such as retinol, retinal, and phytol. They are known to be antimicrobial and anti-inflammatory.
In enzymology, a 5beta-cholestane-3alpha,7alpha-diol 12alpha-hydroxylase (EC 1.14.13.96) is an enzyme that catalyzes the chemical reaction
In enzymology, a cholestanetriol 26-monooxygenase (EC 1.14.13.15) is an enzyme that catalyzes the chemical reaction
In enzymology, a taxadiene 5alpha-hydroxylase (EC 1.14.99.37) is an enzyme that catalyzes the chemical reaction
In enzymology, a taxane 10beta-hydroxylase (EC 1.14.13.76) is an enzyme that catalyzes the chemical reaction
In enzymology, a taxane 13alpha-hydroxylase (EC 1.14.13.77) is an enzyme that catalyzes the chemical reaction
In enzymology, a trans-cinnamate 4-monooxygenase (EC 1.14.14.91) is an enzyme that catalyzes the chemical reaction
The enzyme abieta-7,13-diene synthase catalyzes the chemical reaction
(+)-Costunolide is a naturally occurring sesquiterpene lactone, first isolated in Saussurea costus roots in 1960. It is also found in lettuce.
Abieta-7,13-dien-18-al dehydrogenase (EC 1.2.1.74, abietadienal dehydrogenase (ambiguous)) is an enzyme with systematic name abieta-7,13-dien-18-al:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction
(+)-Menthofuran synthase (EC 1.14.13.104, menthofuran synthase, (+)-pulegone 9-hydroxylase, (+)-MFS, cytochrome P450 menthofuran synthase) is an enzyme with systematic name (+)-pulegone,NADPH:oxygen oxidoreductase (9-hydroxylating). This enzyme catalyses the following chemical reaction
Abieta-7,13-dien-18-ol hydroxylase (EC 1.14.13.109, CYP720B1, PTAO) is an enzyme with systematic name abieta-7,13-dien-18-ol,NADPH:oxygen oxidoreductase (18-hydroxylating). This enzyme catalyses the following chemical reaction
Tryptophan N-monooxygenase (EC 1.14.13.125, tryptophan N-hydroxylase, CYP79B1, CYP79B2, CYP79B3) is an enzyme with systematic name L-tryptophan,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction
Ent-cassa-12,15-diene 11-hydroxylase (EC 1.14.14.112, Formerly EC 1.14.13.145, ent-cassadiene C11alpha-hydroxylase, CYP76M7) is an enzyme with systematic name ent-cassa-12,15-diene,NADPH:oxygen 11-oxidoreductase. This enzyme catalyses the following chemical reaction
Taxoid 14beta-hydroxylase (EC 1.14.13.146) is an enzyme with systematic name 10beta-hydroxytaxa-4(20),11-dien-5alpha-yl-acetate,NADPH:oxygen 14-oxidoreductase. This enzyme catalyses the following chemical reaction
Taxoid 7beta-hydroxylase (EC 1.14.13.147) is an enzyme with systematic name taxusin,NADPH:oxygen 7-oxidoreductase. This enzyme catalyses the following chemical reaction
Geraniol 8-hydroxylase (EC 1.14.14.83, Formerly EC 1.14.13.152, CYP76B6, G10H, CrG10H, SmG10H) is an enzyme with systematic name geraniol,NADPH:oxygen oxidoreductase (8-hydroxylating). This enzyme catalyses the following chemical reaction
(+)-Camphor 6-exo-hydroxylase (EC 1.14.13.161, (+)-camphor 6-hydroxylase) is an enzyme with systematic name (+)-camphor,NADPH:oxygen oxidoreductase (6-exo-hydroxylating). This enzyme catalyses the following chemical reaction
Cytochrome P450 omega hydroxylases, also termed cytochrome P450 ω-hydroxylases, CYP450 omega hydroxylases, CYP450 ω-hydroxylases, CYP omega hydroxylase, CYP ω-hydroxylases, fatty acid omega hydroxylases, cytochrome P450 monooxygenases, and fatty acid monooxygenases, are a set of cytochrome P450-containing enzymes that catalyze the addition of a hydroxyl residue to a fatty acid substrate. The CYP omega hydroxylases are often referred to as monoxygenases; however, the monooxygenases are CYP450 enzymes that add a hydroxyl group to a wide range of xenobiotic and naturally occurring endobiotic substrates, most of which are not fatty acids. The CYP450 omega hydroxylases are accordingly better viewed as a subset of monooxygenases that have the ability to hydroxylate fatty acids. While once regarded as functioning mainly in the catabolism of dietary fatty acids, the omega oxygenases are now considered critical in the production or break-down of fatty acid-derived mediators which are made by cells and act within their cells of origin as autocrine signaling agents or on nearby cells as paracrine signaling agents to regulate various functions such as blood pressure control and inflammation.