acetoacetyl-CoA reductase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.1.1.36 | ||||||||
CAS no. | 9028-41-5 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
In enzymology, an acetoacetyl-CoA reductase (EC 1.1.1.36) is an enzyme that catalyzes the chemical reaction
Thus, the two substrates of this enzyme are (R)-3-hydroxyacyl-CoA and NADP+, whereas its 3 products are 3-oxoacyl-CoA, NADPH, and H+.
This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is (R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase. Other names in common use include acetoacetyl coenzyme A reductase, hydroxyacyl coenzyme-A dehydrogenase, NADP+-linked acetoacetyl CoA reductase, NADPH:acetoacetyl-CoA reductase, D(−)-beta-hydroxybutyryl CoA-NADP+ oxidoreductase, short chain beta-ketoacetyl(acetoacetyl)-CoA reductase, beta-ketoacyl-CoA reductase, D-3-hydroxyacyl-CoA reductase, and (R)-3-hydroxyacyl-CoA dehydrogenase. This enzyme participates in butanoate metabolism.
Acetoacetyl CoA is the precursor of HMG-CoA in the mevalonate pathway, which is essential for cholesterol biosynthesis. It also takes a similar role in the ketone bodies synthesis (ketogenesis) pathway of the liver. In the ketone bodies digestion pathway, it is no longer associated with having HMG-CoA as a product or as a reactant.
In enzymology, a shikimate dehydrogenase (EC 1.1.1.25) is an enzyme that catalyzes the chemical reaction
In enzymology, a carbonyl reductase (NADPH) (EC 1.1.1.184) is an enzyme that catalyzes the chemical reaction
In enzymology, a hydroxymethylglutaryl-CoA reductase (NADPH) (EC 1.1.1.34) is an enzyme that catalyzes the chemical reaction
In enzymology, a hydroxypyruvate reductase (EC 1.1.1.81) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3-oxoacyl-[acyl-carrier-protein] reductase (NADH) (EC 1.1.1.212) is an enzyme that catalyzes the chemical reaction
In enzymology, an acyl-CoA dehydrogenase (NADP+) (EC 1.3.1.8) is an enzyme that catalyzes the chemical reaction
In enzymology, a cis-2-enoyl-CoA reductase (NADPH) (EC 1.3.1.37) is an enzyme that catalyzes the chemical reaction
In enzymology, a trans-2-enoyl-CoA reductase (NADPH) (EC 1.3.1.38) is an enzyme that catalyzes the chemical reaction
In enzymology, an aspartate-semialdehyde dehydrogenase is an enzyme that is very important in the biosynthesis of amino acids in prokaryotes, fungi, and some higher plants. It forms an early branch point in the metabolic pathway forming lysine, methionine, leucine and isoleucine from aspartate. This pathway also produces diaminopimelate which plays an essential role in bacterial cell wall formation. There is particular interest in ASADH as disabling this enzyme proves fatal to the organism giving rise to the possibility of a new class of antibiotics, fungicides, and herbicides aimed at inhibiting it.
In enzymology, a glutamate-5-semialdehyde dehydrogenase (EC 1.2.1.41) is an enzyme that catalyzes the chemical reaction
[Methionine synthase] reductase, or Methionine synthase reductase, encoded by the gene MTRR, is an enzyme that is responsible for the reduction of methionine synthase inside human body. This enzyme is crucial for maintaining the one carbon metabolism, specifically the folate cycle. The enzyme employs one coenzyme, flavoprotein.
In enzymology, a CoA-glutathione reductase (EC 1.8.1.10) is an enzyme that catalyzes the chemical reaction
Very-long-chain 3-oxoacyl-CoA reductase (EC 1.1.1.330, very-long-chain 3-ketoacyl-CoA reductase, very-long-chain beta-ketoacyl-CoA reductase, KCR (gene), IFA38 (gene)) is an enzyme with systematic name (3R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Succinate-semialdehyde dehydrogenase (acylating) (EC 1.2.1.76, succinyl-coA reductase, coenzyme-A-dependent succinate-semialdehyde dehydrogenase) is an enzyme with systematic name succinate semialdehyde:NADP+ oxidoreductase (CoA-acylating). This enzyme catalyses the following chemical reaction
Acrylyl-CoA reductase (NADPH) (EC 1.3.1.84) is an enzyme with systematic name propanoyl-CoA:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Crotonyl-CoA reductase (EC 1.3.1.86, butyryl-CoA dehydrogenase, butyryl dehydrogenase, unsaturated acyl-CoA reductase, ethylene reductase, enoyl-coenzyme A reductase, unsaturated acyl coenzyme A reductase, butyryl coenzyme A dehydrogenase, short-chain acyl CoA dehydrogenase, short-chain acyl-coenzyme A dehydrogenase, 3-hydroxyacyl CoA reductase, butanoyl-CoA:(acceptor) 2,3-oxidoreductase, CCR) is an enzyme with systematic name butanoyl-CoA:NADP+ 2,3-oxidoreductase. This enzyme catalyses the following chemical reaction