Ambolestes

Last updated

Ambolestes
Temporal range: Early Cretaceous, 126  Ma
O
S
D
C
P
T
J
K
Pg
N
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Clade: Eutheria
Genus: Ambolestes
Bi et al., 2018
Type species
Ambolestes zhoui
Bi et al., 2018

Ambolestes is an extinct genus of eutherian mammal from the Early Cretaceous of China. It includes a single species, Ambolestes zhoui, known from a single complete skeleton recovered from the Yixian Formation (126 Ma), part of the fossiliferous Jehol biota. Ambolestes is one of the most basal eutherians, presenting a combination of features from both early eutherians (stem-placentals) and early metatherians (stem-marsupials). This is responsible for the generic name of Ambolestes: "ambo" is Latin for "both", while "-lestes" (Greek for "robber") is a popular suffix for fossil mammals. The species name honors influential Jehol paleontologist Zhou Zhonghe. [1]

Contents

Description

Ambolestes was a fairly small mammal, with an estimated mass of 34–44 g (about the size of a modern mouse opossum, Marmosa ). It was likely similar in appearance and habits to other putative Yixian Formation therians, such as Eomaia and Sinodelphys . [1]

There are several similarities between Ambolestes and Sinodelphys. Both are interpreted to bear 8 upper postcanine teeth (5 premolars and 3 molars) and 7 lower postcanine teeth (4 premolars and 3 molars) on each side of the skull. The rear premolars are similar to the tall, sharp tribosphenic molars (though the premolars lack a protocone). Earlier premolars are smaller, blade-shaped, and widely spaced. The shape and number of incisors are unknown in Ambolestes, while the canines are distinctively double-rooted. The wrist has enlarged scaphoid, hamate, and triquetrum bones, similar to Sinodelphys and metatherians. Other traits are more similar to Eomaia and eutherians: the mandibular angle is not inturned, and the trapezium bone of the wrist is also large. [1]

Ambolestes preserves an ectotympanic bone of the middle ear, a delicate bone which is rarely preserved in Mesozoic mammal fossils. The ectotympanic is horseshoe-shaped and thickened at its lower half, similar to that of short-tailed opossums ( Monodelphis ). The lower part of the ectotympanic hosts a small groove, the meckelian sulcus. The sulcus is a vestige of the meckel's cartilage, a thin plate which connected the middle ear ossicles to the jaw in earlier mammals. Like other therians, the front part of the malleus is downcurved and confluent with the front edge of the ectotympanic, according to a facet on the latter bone. Ambolestes is also the first Mesozoic mammal to be discovered with a complete hyoid apparatus. The hyoid consists of seven linked bones, similar to some squirrels, though the thyrohyals (lower lateral prongs) are enlarged, more akin to the five-bone hyoids of marsupials. [1]

Classification

According to a phylogenetic analysis by Bi et al. (2018), Ambolestes forms a small clade with Montanalestes , Acristatherium , and Sinodelphys at the base of Eutheria. [1] In 2022, the new Jehol eutherian Cokotherium was added to the clade, while Acristatherium shifted crownwards (closer to placentals). [2] Ambolestes and its basal eutherian clade prompt a re-evaluation of ancestral conditions at the common ancestor of Eutheria and Metatheria. Sinodelphys, for example, was commonly considered to be the oldest known metatherian in most studies prior to 2018. If interpreted as eutherians, Sinodelphys and Ambolestes would indicate that early eutherians were more metatherian-like than previously considered. The removal of Sinodelphys from Metatheria would also expand the ghost lineage between the oldest eutherian ( Juramaia , 160 Ma) and the next oldest metatherians (deltatheroids and marsupialiforms, 110 Ma). [1]

Related Research Articles

<span class="mw-page-title-main">Marsupial</span> Infraclass of mammals in the clade Metatheria

Marsupials are any members of the mammalian infraclass Marsupialia. All extant marsupials are endemic to Australasia, Wallacea and the Americas. A distinctive characteristic common to most of these species is that the young are carried in a pouch. Living marsupials include kangaroos, koalas, opossums, Tasmanian devils, wombats, wallabies, and bandicoots among others, while many extinct species, such as the thylacine, Thylacoleo, and Diprotodon, are also known.

<i>Eomaia</i> Extinct genus of mammals

Eomaia is a genus of extinct fossil mammals containing the single species Eomaia scansoria, discovered in rocks that were found in the Yixian Formation, Liaoning Province, China, and dated to the Barremian Age of the Lower Cretaceous about 125 million years ago. The single fossil specimen of this species is 10 centimetres (3.9 in) in length and virtually complete. An estimate of the body weight is 20–25 grams (0.71–0.88 oz). It is exceptionally well-preserved for a 125-million-year-old specimen. Although the fossil's skull is squashed flat, its teeth, tiny foot bones, cartilages and even its fur are visible.

<span class="mw-page-title-main">Eutheria</span> Clade of mammals in the subclass Theria

Eutheria, also called Pan-Placentalia, is the clade consisting of placental mammals and all therian mammals that are more closely related to placentals than to marsupials.

<span class="mw-page-title-main">Metatheria</span> Clade of marsupials and close relatives

Metatheria is a mammalian clade that includes all mammals more closely related to marsupials than to placentals. First proposed by Thomas Henry Huxley in 1880, it is a more inclusive group than the marsupials; it contains all marsupials as well as many extinct non-marsupial relatives.

<span class="mw-page-title-main">Prototheria</span> Subclass of mammalia

Prototheria is an obsolete subclass of mammals which includes the living Monotremata and to which a variety of extinct groups, including Morganucodonta, Docodonta, Triconodonta and Multituberculata, have also been assigned. It is today no longer considered a valid grouping, but rather a paraphyletic evolutionary grade of basal mammals and mammaliaform cynodonts.

<span class="mw-page-title-main">Theria</span> Subclass of mammals in the clade Theriiformes

Theria is a subclass of mammals amongst the Theriiformes. Theria includes the eutherians and the metatherians but excludes the egg-laying monotremes and various extinct mammals evolving prior to the common ancestor of placentals and marsupials.

<i>Sinodelphys</i> Extinct genus of therian mammals

Sinodelphys is an extinct mammal from the Early Cretaceous, estimated to be 125 million years old. It was discovered and described in 2003 in rocks of the Yixian Formation in Liaoning Province, China, by a team of scientists including Zhe-Xi Luo and John Wible. While initially suggested to be the oldest known metatherian, later studies interpreted it as a eutherian.

<span class="mw-page-title-main">Sparassodonta</span> Extinct order of mammals

Sparassodonta is an extinct order of carnivorous metatherian mammals native to South America, related to modern marsupials. They were once considered to be true marsupials, but are now thought to be a separate side branch that split before the last common ancestor of all modern marsupials. A number of these mammalian predators closely resemble placental predators that evolved separately on other continents, and are cited frequently as examples of convergent evolution. They were first described by Florentino Ameghino, from fossils found in the Santa Cruz beds of Patagonia. Sparassodonts were present throughout South America's long period of "splendid isolation" during the Cenozoic; during this time, they shared the niches for large warm-blooded predators with the flightless terror birds. Previously, it was thought that these mammals died out in the face of competition from "more competitive" placental carnivorans during the Pliocene Great American Interchange, but more recent research has showed that sparassodonts died out long before eutherian carnivores arrived in South America. Sparassodonts have been referred to as borhyaenoids by some authors, but currently the term Borhyaenoidea refers to a restricted subgroup of sparassodonts comprising borhyaenids and their close relatives.

<i>Akidolestes</i> Extinct genus of mammals

Akidolestes is an extinct genus of mammals of the family Spalacotheriidae, a group of mammals related to therians.

<span class="mw-page-title-main">Evolution of mammals</span> Derivation of mammals from a synapsid precursor, and the adaptive radiation of mammal species

The evolution of mammals has passed through many stages since the first appearance of their synapsid ancestors in the Pennsylvanian sub-period of the late Carboniferous period. By the mid-Triassic, there were many synapsid species that looked like mammals. The lineage leading to today's mammals split up in the Jurassic; synapsids from this period include Dryolestes, more closely related to extant placentals and marsupials than to monotremes, as well as Ambondro, more closely related to monotremes. Later on, the eutherian and metatherian lineages separated; the metatherians are the animals more closely related to the marsupials, while the eutherians are those more closely related to the placentals. Since Juramaia, the earliest known eutherian, lived 160 million years ago in the Jurassic, this divergence must have occurred in the same period.

<i>Ambondro mahabo</i> Species of small mammal from the middle Jurassic of Madagascar

Ambondro mahabo is a mammal from the Middle Jurassic (Bathonian) Isalo III Formation of Madagascar. The only described species of the genus Ambondro, it is known from a fragmentary lower jaw with three teeth, interpreted as the last premolar and the first two molars. The premolar consists of a central cusp with one or two smaller cusps and a cingulum (shelf) on the inner, or lingual, side of the tooth. The molars also have such a lingual cingulum. They consist of two groups of cusps: a trigonid of three cusps at the front and a talonid with a main cusp, a smaller cusp, and a crest at the back. Features of the talonid suggest that Ambondro had tribosphenic molars, the basic arrangement of molar features also present in marsupial and placental mammals. It is the oldest known mammal with putatively tribosphenic teeth; at the time of its discovery it antedated the second oldest example by about 25 million years.

Several mammals are known from the Mesozoic of Madagascar. The Bathonian Ambondro, known from a piece of jaw with three teeth, is the earliest known mammal with molars showing the modern, tribosphenic pattern that is characteristic of marsupial and placental mammals. Interpretations of its affinities have differed; one proposal places it in a group known as Australosphenida with other Mesozoic tribosphenic mammals from the southern continents (Gondwana) as well as the monotremes, while others favor closer affinities with northern (Laurasian) tribosphenic mammals or specifically with placentals. At least five species are known from the Maastrichtian, including a yet undescribed species known from a nearly complete skeleton that may represent a completely new group of mammals. The gondwanathere Lavanify, known from two teeth, is most closely related to other gondwanatheres found in India and Argentina. Two other teeth may represent another gondwanathere or a different kind of mammal. One molar fragment is one of the few known remains of a multituberculate mammal from Gondwana and another has been interpreted as either a marsupial or a placental.

<span class="mw-page-title-main">Yinotheria</span> Subclass of mammals

Yinotheria is a proposed basal subclass clade of crown mammals uniting the Shuotheriidae, an extinct group of mammals from the Jurassic of Eurasia, with Australosphenida, a group of mammals known from the Jurassic to Cretaceous of Gondwana, which possibly include living monotremes. Today, there are only five surviving species of monotremes which live in Australia and New Guinea, consisting of the platypus and four species of echidna. Fossils of yinotheres have been found in Britain, China, Russia, Madagascar and Argentina. Contrary to other known crown mammals, they retained postdentary bones as shown by the presence of a postdentary trough. The extant members (monotremes) developed the mammalian middle ear independently.

<i>Anatoliadelphys</i> Extinct family of mammals

Anatoliadelphys maasae is an extinct genus of predatory metatherian mammal from the Eocene of Anatolia. It was an arboreal, cat-sized animal, with powerful crushing jaws similar to those of the modern Tasmanian devil. Although most mammalian predators of the northern hemisphere in this time period were placentals, Europe was an archipelago, and the island landmass now forming Turkey might have been devoid of competing mammalian predators, though this may not matter since other carnivorous metatherians are also known from the Cenozoic in the Northern Hemisphere. Nonetheless, it stands as a reminder that mammalian faunas in the Paleogene of the Northern Hemisphere were more complex than previously thought, and metatherians did not immediately lose their hold as major predators after their success in the Cretaceous.

<span class="mw-page-title-main">Zalambdalestidae</span> Extinct family of mammals

Zalambdalestidae is a clade of Asian eutherians occurring during the Late Cretaceous. Once classified as Glires, features like epipubic bones and various cranial elements have identified these animals as outside of Placentalia, representing thus a specialised clade of non-placental eutherians without any living descendants, and potentially rather different from modern placentals in at least reproductive anatomy.

<i>Gypsonictops</i> Extinct genus of mammals

Gypsonictops is an extinct genus of leptictidan mammals of the family Gypsonictopidae, which was described in 1927 by George Gaylord Simpson. Species in this genus were small mammals and the first representatives of the order Leptictida, that appeared during the Upper Cretaceous.

<i>Holoclemensia</i> Extinct family of mammals

Holoclemensia is an extinct genus of mammal of uncertain phylogenetic placement. It lived during the Early Cretaceous and its fossil remains were discovered in Texas.

<i>Asiatherium</i> Extinct family of mammals

Asiatherium is an extinct genus of mammal, probably belonging to Metatheria. It lived during the Late Cretaceous, and its fossilized remains were discovered in Mongolia.

<i>Cokotherium</i> Extinct genus of mammals

Cokotherium is an extinct genus of eutherian mammal from the Early Cretaceous of China. It includes a single species, Cokotherium jiufotangensis, known from a single partial skeleton, missing a portion of the hindlimbs and tail. It was recovered from the Jiufotang Formation, the upper part of the fossiliferous Jehol biota. The generic name of Cokotherium honors the nickname of the late paleontologist Chuan-Kui Li, a specialist on the Jiufotang Formation. The specific name refers to the formation in question. Cokotherium is one of the youngest and most well-preserved Early Cretaceous eutherians, illustrating an array of transitional conditions between Early Cretaceous and Late Cretaceous members of Eutheria.

Chaoyangodens is an extinct genus of eutriconodont mammal from the Early Cretaceous of China. It includes a single species, Chaoyangodens lii, known from a single complete skeleton recovered from the Dawangzhangzi bed of the Yixian Formation, part of the fossiliferous Jehol biota. Chaoyangodens was a moderate-sized Mesozoic mammal. The generic name refers to Chaoyang Prefecture while the specific name honors the collector of the fossil, Hai-Jun Li. Chaoyangodens is intermediate in age between Liaoconodon and a diverse fauna of eutriconodonts from older beds of the Yixian Formation. Like Liaoconodon, it is not easily equated with other eutriconodonts, since it bears distinctive dental traits relative to recognized eutriconodont subgroups.

References

  1. 1 2 3 4 5 6 Bi, Shundong; Zheng, Xiaoting; Wang, Xiaoli; Cignetti, Natalie E.; Yang, Shiling; Wible, John R. (2018). "An Early Cretaceous eutherian and the placental–marsupial dichotomy". Nature. 558 (7710): 390–395. Bibcode:2018Natur.558..390B. doi:10.1038/s41586-018-0210-3. ISSN   1476-4687. PMID   29899454. S2CID   91737831.
  2. Wang, Hai-Bing; Hoffmann, Simone; Wang, Dian-Can; Wang, Yuan-Qing (7 February 2022). "A new mammal from the Lower Cretaceous Jehol Biota and implications for eutherian evolution". Philosophical Transactions of the Royal Society B. 377 (1847). doi:10.1098/rstb.2021.0042. PMC   8819371 . PMID   35125007.