Argyrotheca

Last updated

Argyrotheca
Temporal range: Maastrichtian–Recent
Argyrotheca cuneata brachial valve.jpg
Argyrotheca cuneata, 4mm, Miocene
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Argyrotheca

Dall, 1900
species
  • A. cuneata (Risso, 1826) (type) = Terebratula cuneata, T. soldaniana
  • A. angulataZezina, 1987
  • A. australis(Blochmann, 1910)
  • A. barrettiana(Davidson, 1866)
  • A. bermudanaDall, 1911
  • A. cistellula(Searles-Wood, 1841) = Argiope cistellula
  • A. cooperiLogan & Bitner, 2013
  • A. crassaCooper, 1977
  • A. faujasi(Bosquet, 1859) = Argiope faujasi Maastrichtian
  • A. furtiveSimon, 2010
  • A. grandicostataLogan, 1983
  • A. hewattiCooper, 1977
  • A. jacksoniCooper, 1973
  • A. johnsoniCooper, 1934
  • A. loweiHertlein & Grant, 1944
  • A. lutea(Dall, 1871)
  • A. mayiBlochmann, 1914
  • A. megatremoides(Bosquet, 1859) = Argiope megatremoides Maastrichtian
  • A. neocaledonensisBitner, 2010
  • A. rubrocostataCooper, 1977
  • A. rubrotincta(Dall, 1871)
  • A. schrammi(Crosse & Fischer, 1866)
  • A. somaliensisCooper, 1973
  • A. thurmanniCooper, 1973
  • A. woodwardiana(Davidson, 1866)
Synonyms

Cistella Gray, 1853 non Gistl, 1848, a Darkling beetle

Contents

Argyrotheca is a genus of very small to minute lampshells (maximum 5 millimetres or 0.20 inches long). All species share a large pedicel opening (or foramen), one ridge on the inside of the pedunculate valve, pits in a diamond pattern on the inside of both valves, and without radial ridges that end in tubercles. It occurs in depths between 6 and 1300 m. It is known since the latest Cretaceous.

Description

Argyrotheca cuneata, interior of the shell: A = cardinal muscle, B = adductor muscle, C = pedicle muscle, D = mouth (bottom) Argyrotheca cuneata draw.jpg
Argyrotheca cuneata, interior of the shell: A = cardinal muscle, B = adductor muscle, C = pedicle muscle, D = mouth (bottom)

Some Argyrotheca species have red stripes radiating from the pedicle opening (or foramen). These species are among a few living brachiopods with color marking on the shell. All other colored brachiopods are from shallow water too. This kind of color patterns may be a form of camouflage. [1] Argyrotheca is fastened by a very short and thick stalk. [2] The shell is biconvex with two high and wide ribs radiating close to the midline (a shell-shape called strangulate) and four radiating ribs of declining height and width further lateral (a shell-shape called oppositely multiplicate), smooth or more commonly multiplicate. The inner surface of the shell has many rather coarse pits (or punctae). The larger valve (pedicle valve or ventral valve) has a fairly short stump beak (or subtruncate). The pedicle opening (or foramen) is large (about ⅓× the maximum with of the shell), almost entirely situated in the backfolding part (or delthyrium) of the pedicle valve (submesothyridid to almost hypothyridid), leaving ample space for the small deltidial plates. The pedicle collar is well developed, and is supported by median ridge (or septum).The lophophore is large. [1]

Argyrotheca resembles Megathiris, but Argyrotheca has one partition in the middle of the inside of the pedicle valve (the medial dorsal septum) and a lophophore indented in the middle but without lobation of the branches (or schizolophous), while Megathiris has three septa and a lophophore with lobed branches (or ptycholophous). [3] Joania, which was recently split from Argyrotheca, can be distinguished by the radial ribs on the inside of the peduncle valve that end in tubercles somewhat removed from the margin, and a row of tubercles on the edge of the septum. [4]

Taxonomy

A. rubrocostata does not have a brood pouch and has separate sexes. This cast doubts on the monophyly of Argyrotheca. [5]

Reassigned species

Ecology

Reproduction

3-lobed larval phase of Argyrotheca cordata, 180mm, lateral view, top apical lobe with long cilia, mid-section mantel lobe, with ventral cilia (left) and 4 bundles of setae (2 visible), bottom pedicle lobe, without cilia Argyrotheca 3-lobed-lateral.png
3-lobed larval phase of Argyrotheca cordata, 180μm, lateral view, top apical lobe with long cilia, mid-section mantel lobe, with ventral cilia (left) and 4 bundles of setae (2 visible), bottom pedicle lobe, without cilia

Unique among extant brachiopods, Argyrotheca and Joania are hermaphrodite. Another most unusual specialization in both these genera, is that the eggs (or ovae) are retained in the enlarged nephridia that act as a brood pouch. Fertilization takes place with its own sperm or after sperms have entered with the inhalant water current. Here early larval development takes place. The fertilized ova develop into ciliated larvae with a feebly free-swimming life of at most a few days before settling and metamorphosis into a tiny brachiopod fixed to the substrate. [1] In A. cordata and A. cistellula in the Mediterranean, ripe eggs and larvae are present year round. A. cuneata however breeds in the autumn. Eggs hatch into gastrulas, followed by a two- and a three-lobed phase during their stay in the brood pouch. The frontal (or apical) lobe has a girdle of long cilia, a middle (mantle) lobe carries a band of cilia in the middle of the belly (or ventral side) and a rear (or pedicle) lobe is without cilia. A. cordata and A. cuneata larvae have 4 bundles of bristles (or setae), while these are lacking in A. cistellula. Extant brachiopods with brood pouches (Megathyridoidea: Argyrotheca and Joania, Gwynioidea: Gwynia , and all Thecideoidea) are very small or minute and have short lives (2 years reported for A. cuneata [6] ). This implies that reproduction needs to be both quick and efficient. Being hermaphrodite allows for quick and efficient self-fertilisation, and the brood pouch would reduce predation of the larvae. [5] [7]

Attachment

Near Bermuda Argyrotheca is mostly found on the underside of leaf-shaped corals, like Agaricia , Mycetophyllia or Montastraea or in between branches of corals, such as Porites , Mussa and Madracis , up to about 75 m. Further down, sponges like Agelas and Plakorthis , and concretions dominante as substrate. [2] A. cuneata in deeper waters near Brazil is commonly found attached to shell fragments like those of bivalves. [3] Elsewhere undersea caves provide shelter in shallow water. [8]

Predation

One study showed that 3,8% of the empty shells of recent A. cuneata were predated. Three types of hole were distinguished, neat regular borings by a mollusc radula, large irregular ones presumably made by crabs, and bowl shaped hollows with a small opening at the bottom, characteristic for foraminifers. [9] Another study of fossil A. cuneata showed a large difference between two nearby (2 km) and almost contemporary (Middle Miocene, Serravallian) locations in Poland. At Węglin, 23% of the shells had holes, but only 2% at Weglinek. Here two types of holes were distinguished: conical, assigned to naticid molluscs, and cylindrical holes, that are assumed to be made by muricate sea snails. [10] Agyrotheca shakes forcefully when disturbed by animals swimming by and when disposing of particles. [2]

Distribution

Argyrotheca is known from the Upper Cretaceous in Europe and North America, from the Eocene in Europe, North and Latin America and the West Indies, from the Oligocene in Europe and Mexico, from the Miocene in Europe, the Russian Federation, North America, the West Indies and New Zealand, and from the Pliocene in England and Italy. It can currently be found in the Atlantic (60-1280m), Pacific (160m), Mediterranean (6-400m), [1] the Red Sea and the Persian Gulf. [11] A. cistellula, A. cordata and A. cuneata are the only species present in the Mediterranean. [7]

Species

A. ageriana

A. ageriana, has been described from the lower Pleistocene of Italy (Castro Marina, Lecce, Apulia). It lived in a temperate to warm-temperate sea, 75–100 m deep. [12]

A. cistellula

A. cistellula is a minute brachiopod, dirty white to yellow or grey in color, and has a maximum size of 2 x 3 mm. The brachial valve is rounded rectangular, a bit wider than long, or square in outline. This valve is slightly bilobed. The hinge line is straight and spans the entire width of the shell. Externally the surfaces are smooth or show faint concentric growth lines. The inner surfaces of the shell have small pits (or is endopunctate). The peduncle valve is moderately convex and has a short drop-shape, with a straight beak (or umbo), and a straight margin opposite to the hinge. The opening for the peduncle (or foramen) is large, ¼-⅓ of the total width and the triangular plates that bridge the distance between the dorsal and ventral surfaces of the shell (or deltidial plates) do not touch. This species attaches itself to hard substrates, in water between 20–100 m. The current known distribution of A. cistellula is Norway, the United Kingdom and Ireland (north-east Scotland, English Channel, west coast of the British Isles), and Italy (Sardinia and Sicily). [13]

A. cuneata

Living specimens of A. cuneata have been reported from a submarine cave in Cyprus (Cape Greco, 6 m deep, with two other brachiopod species: Novocrania turbinata and Megathyris detruncata), and the Cape Verde Islands (Tarrafal, northwestern coast of Sao Tiago Island, 15 m deep). [8] The species is also reported from the outer shelf (100–200 m deep), off the coast of Brazil (Rio de Janeiro, São Paulo, and Parana states), on carbonate rich sediment, where they are attached to shell fragments like those of bivalves. [3]

A. jacksoni

A. jacksoni is known from the Red Sea (shallow reef cave at Ras Muhammad, southernmost Sinai Peninsula, Gulf of Aqaba and around Port Sudan) and the Persian Gulf (Karan Island, 27°43’N 49°48.8’E; Jana Island, 27°22.4’N 49°54’E) from a depth between 5 and 16 m. It is close in size and shape to A. cuneata, which differs by having a pink-red wash between the costae. [11] [14]

Related Research Articles

<span class="mw-page-title-main">Lingulata</span> Class of marine lamp shells

Lingulata is a class of brachiopods, among the oldest of all brachiopods having existed since the Cambrian period. They are also among the most morphologically conservative of the brachiopods, having lasted from their earliest appearance to the present with very little change in shape. Shells of living specimens found today in the waters around Japan are almost identical to ancient Cambrian fossils.

<span class="mw-page-title-main">Craniata (brachiopod)</span> Class of marine lamp shells

Craniata is a class of brachiopods originating in the Cambrian period and still extant today. It is the only class within the subphylum Craniiformea, one of three major subphyla of brachiopods alongside linguliforms and rhynchonelliforms. Craniata is divided into three orders: the extinct Craniopsida and Trimerellida, and the living Craniida, which provides most information on their biology. Living members of the class have shells which are composed of calcite, though some extinct forms my have aragonite shells. The shells are inarticulate and are usually rounded in outline. There is no pedicle; the rear edge of the body cavity is a smooth and flat wall perforated by the anus. This class of brachiopods has an unsupported lophophore with only a single row of tentacles. In the absence of a pedicle, the shell is usually attached directly to a hard substrate. Many craniiforms are encrusting animals which attach directly to the shell of another animal, usually another brachiopod. The plicae from the host brachiopod will then appear within the shell of the craniiform.

<i>Lingula</i> (brachiopod) Genus of brachiopods within the class Lingulata

Lingula is a genus of brachiopods within the class Lingulata. Lingula or forms very close in appearance have existed possibly since the Cambrian. Like its relatives, it has two unadorned organo-phosphatic valves and a long fleshy stalk. Lingula lives in burrows in barren sandy coastal seafloor and feeds by filtering detritus from the water. It can be detected by a short row of three openings through which it takes in water (sides) and expels it again (middle).

<span class="mw-page-title-main">Phoronid</span> Phylum of marine animals

Phoronids are a small phylum of marine animals that filter-feed with a lophophore, and build upright tubes of chitin to support and protect their soft bodies. They live in most of the oceans and seas, including the Arctic Ocean but excluding the Antarctic Ocean, and between the intertidal zone and about 400 meters down. Most adult phoronids are 2 cm long and about 1.5 mm wide, although the largest are 50 cm long.

<span class="mw-page-title-main">Brachiopod</span> Phylum of marine animals also known as lamp shells

Brachiopods, phylum Brachiopoda, are a phylum of trochozoan animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like pedicle projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.

<span class="mw-page-title-main">Evolution of brachiopods</span> The origin and diversification of brachiopods through geologic time

The origin of the brachiopods is uncertain; they either arose from reduction of a multi-plated tubular organism, or from the folding of a slug-like organism with a protective shell on either end. Since their Cambrian origin, the phylum rose to a Palaeozoic dominance, but dwindled during the Mesozoic.

<span class="mw-page-title-main">Rhynchonelliformea</span> Subphylum of brachiopods

Rhynchonelliformea is a major subphylum and clade of brachiopods. It is roughly equivalent to the former class Articulata, which was used previously in brachiopod taxonomy up until the 1990s. These so-called articulated brachiopods have many anatomical differences relative to "inarticulate" brachiopods of the subphyla Linguliformea and Craniformea. Articulates have hard calcium carbonate shells with tongue-and-groove hinge articulations and separate sets of simple opening and closing muscles.

<span class="mw-page-title-main">Rhynchonellata</span> Class of marine lamp shells

The Rhynchonellata is a class of Lower Cambrian to Recent articulate brachiopods that combines orders from within the Rhynchonelliformea with well developed pedicle attachment. Shell forms vary from those with wide hinge lines to beaked forms with virtually no hinge line and from generally smooth to strongly plicate. Most all are biconvex. Lophophores vary and include both looped and spiraled forms. Although morphologically distinct, included orders follow a consistent phylogenetic sequence.

<span class="mw-page-title-main">Pentamerida</span> Extinct order of shelled animals

Pentamerida is an order of biconvex, impunctate shelled, articulate brachiopods that are found in marine sedimentary rocks that range from the Middle Cambrian through the Devonian.

Mickwitziids are a Cambrian group of shelly fossils with originally phosphatic valves, belonging to the Brachiopod stem group, and exemplified by the genus Mickwitzia – the other genera are Heliomedusa and Setatella. The family Mickwitziidae is conceivably paraphyletic with respect to certain crown-group brachiopods.

<span class="mw-page-title-main">Rhynchonelloidella alemanica</span> Species of marine lamp shell

Rhynchonelloidella alemanica is a species of extinct, small-sized brachiopod, a marine rhynchonellate lampshell in the family Rhynchonellidae. It is roughly 1.4 cm (0.55 in), and has about 15 ribs fanning out from the hinge.

<span class="mw-page-title-main">Athyridida</span> Extinct order of brachiopods

Athyridida is an order of Paleozoic brachiopods included in the Rhynchonellata, which makes up part of the articulate brachiopods.

<i>Gwynia capsula</i> Species of marine lamp shell

Gwynia capsula is a very small to minute brachiopod, currently known from the east Atlantic, but which occurred during the Pleistocene in what is now Norway. It has a translucent, whitish, purse-shaped shell with relatively large, wide-spaced pits. It lives attached to stones or shells (fragments) in between large grains of sand. Like in all brachiopods, it filters food particles, chiefly diatoms and dinoflagellates. Gwynia capsula harbors a small number of larvae inside a brood pouch, but it has separate sexes, unlike also very small and pouch brooding brachiopods Argyrotheca and Joania, which are hermaphrodites.

<i>Dallina</i> Genus of brachiopods

Dallina is a genus of small to average size lampshells. It is known since the Miocene.

<span class="mw-page-title-main">Siphonotretida</span> Extinct order of marine lamp shells

Siphonotretida is an extinct order of linguliform brachiopods in the class Lingulata. The order is equivalent to the sole superfamily Siphonotretoidea, itself containing the sole family Siphonotretidae. Siphonotretoids were originally named as a superfamily of Acrotretida, before being raised to their own order.

<span class="mw-page-title-main">Kutorginata</span> Extinct genus of shelled animals

Kutorginates (Kutorginata) are an extinct class of early rhynchonelliform ("articulate") brachiopods. The class contains only a single order, Kutorginida (kutorginides). Kutorginides were among the earliest rhynchonelliforms, restricted to the lower-middle part of the Cambrian Period.

<span class="mw-page-title-main">Orthotetida</span> Extinct order of marine lamp shells

The orthotetides (Orthotetida) are an extinct order of brachiopods in the class Strophomenata. Though not particularly diverse or abundant relative to strophomenides (Strophomenida) or productides (Productida), orthotetides were nevertheless the longest-lasting order of strophomenates, surviving from the Middle Ordovician (“Llanvirn”) up until the Late Permian. Externally, many orthotetides are difficult to distinguish from strophomenides. Most fundamental differences between the two orders are internal: orthotetides have more elaborate cardinal processes and a greater diversity of shell microstructure.

Fallax is a genus of brachiopods belonging to the family Aulacothyropsidae.

Jaffaia is a monotypic genus of brachiopods belonging to the family Dallinidae. The only species is Jaffaia jaffaensis from southern Australia. The species was described by Blochmann in 1910 and recently re-described in the Australian Journal of Taxonomy.

<i>Terebratalia transversa</i> Species of brachiopod

Terebratalia transversa or the North Pacific Lampshell is a species of marine brachiopod in the family Terebrataliidae. A two-valved shelled species, they are most frequently found in tidal habitats in the Pacific Northwest of the United States.

References

  1. 1 2 3 4 Moore, R.C. (1965). Brachiopoda. Treatise on Invertebrate Paleontology. Vol. Part H., Volume 1 and 2. Boulder, Colorado/Lawrence, Kansas: Geological Society of America/University of Kansas Press. pp. H21, H32, H43–46, H100, H206, H208, H210, H820, H831. ISBN   978-0-8137-3015-8.
  2. 1 2 3 Asgaard, Ulla; Stentoft, Niels (1984). "Recent micromorph brachiopods from Barbados: palaeoecological and evolutionary implications". Geobios. 17 (spėcial nr 8): 29–33. doi:10.1016/s0016-6995(84)80153-9.
  3. 1 2 3 Simões, Marcello G.; Kowalewski, Michał; Mello, Luis H.C.; Rodland, David L.; Carroll, Monica (2004). "Recent brachiopods from the Southern Brazilean shelf: palaeontological and biogeographical implications". Palaeontology. 57 (3): 515–533. doi:10.1111/j.0031-0239.2004.00383.x. hdl: 11449/34980 .
  4. Alvarez, Fernanco; howard, C.; Howard, C.; Long, Sarah L. (2007). "Loop ultrastructure and development in recent Megathiridoidea, with description of a new genus, Joania (type species Terebratula cordata Risso, 1826)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 98 (3–4): 391–403. doi:10.1017/s1755691008075130.
  5. 1 2 Kaulfuss, Anne; Seidel, Ronald; Lüter, Carsten (2013). "Linking micromorphism, brooding, and hermaphroditism in brachiopods: Insights from Caribbean Argyrotheca (Brachiopoda)". Journal of Morphology. 274 (4): 361–376. doi:10.1002/jmor.20093. PMID   23400897.
  6. Evangelisti, Francesca; Albano, Paolo G.; Sabelli, Bruno (2013). "Size-frequency distributions of Joania cordata and Argyrotheca cuneata (Brachiopoda: Megathyrididae) from the Central Tyrrhenian Sea". Marine Ecology. on-line version (3): 377–386. doi:10.1111/maec.12096.
  7. 1 2 Grobe, P.; Lüter, C. (1999). "Reproductive cycles and larval morphology of three Recent species of Argyrotheca (Terebratellacea: Brachiopoda) from Mediterranean submarine caves". Marine Biology. 134 (3): 595–600. doi:10.1007/s002270050574.
  8. 1 2 "Argyrotheca Dall, 1900". BrachNet. Retrieved 2014-03-16.
  9. Evangelisti, Francesca; Albano, Paolo (2012). "Predation om two brachiopods, Joania cordata and Argyrotheca cuneata, from an off-shore reef in the Tyrrhenian Sea". Marine Biology. 159 (10): 2349. doi:10.1007/s00227-012-2019-1.
  10. Baumiller, Tomasz K.; Bitner, Maria A. (2004). "A case of intens drilling of brachiopods from the Middle Miocene of southeast Poland". Palaeogeography, Palaeoclimatology, Palaeoecology. 214 (1–2): 85–95. doi:10.1016/s0031-0182(04)00393-1.
  11. 1 2 Bitner, Maria Aleksandra; Logan, Alan; Gischler, Eberhard (2008). "Recent brachiopods from the Persian Gulf and their biogeographical significance". Scientia Marina. 2 (72).
  12. Taddei Ruggiero, E. (1993). "Argyrotheca ageriana sp. nov. (brachiopoda): paleoecology and shell ultrastructure". Palaeogeography, Palaeoclimatology, Palaeoecology. 100 (1–2): 217–227. doi:10.1016/0031-0182(93)90044-j.
  13. Mario de Kluijver; Sarita Ingalsuo. "Argyrotheca cistellula". Marine Species Identification Portal. Retrieved 2012-03-16.
  14. Cooper, G. Arthur (1973). "New Brachiopoda from the Indian Ocean". Smithsonian Contributions to Paleobiology (16): 1–45. doi:10.5479/si.00810266.16.1.