Association for Decentralised Energy

Last updated

The Association for Decentralised Energy
AbbreviationThe ADE
Formation1967
Legal status Non-profit company
PurposeCombined heat and power, district heating and demand side services in the United Kingdom
Location
  • 6th Floor, 10 Dean Farrar Street, London, SW1H 0DX
Region served
UK
Membershipc. 100 including energy, construction and manufacturing companies, universities and local councils
Chief Executive
Caroline Bragg
Website www.theade.co.uk

The Association for Decentralised Energy (ADE), formerly the Combined Heat and Power Association, is an advocate of an integrated approach to delivering energy locally. The ADE was founded in 1967 as the District Heating Association, becoming the Combined Heat and Power Association in 1983, and was then renamed to the Association for Decentralised Energy on 12 January 2015. The ADE has over 100 members.[ citation needed ]

Contents

The Association merged with the Association for the Conservation of Energy in 2018. [1] [2]

The ADE acts as an advocate for its members by engaging with Government and key decision makers to support cost effective and efficient solutions to industry, businesses and householders by:

The Association also provide secretariat for the Independent Heat Customer Protection Scheme.

See also

Related Research Articles

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Distributed generation</span> Decentralised electricity generation

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

<span class="mw-page-title-main">Compressed-air energy storage</span> Method for matching variable production with demand

Compressed-air-energy storage (CAES) is a way to store energy for later use using compressed air. At a utility scale, energy generated during periods of low demand can be released during peak load periods.

<span class="mw-page-title-main">Energy conservation</span> Reducing energy consumption

Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively or changing one's behavior to use less and better source of service. Energy conservation can be achieved through efficient energy use, which has some advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

<span class="mw-page-title-main">Combined cycle power plant</span> Assembly of heat engines that work in tandem from the same source of heat

A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turbine (CCGT) plant, which is a kind of gas-fired power plant. The same principle is also used for marine propulsion, where it is called a combined gas and steam (COGAS) plant. Combining two or more thermodynamic cycles improves overall efficiency, which reduces fuel costs.

<span class="mw-page-title-main">Cogeneration</span> Simultaneous generation of electricity and useful heat

Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time.

<span class="mw-page-title-main">Environmental technology</span> Technical and technological processes for protection of the environment

Environmental technology (envirotech) is the use of engineering and technological approaches to understand and address issues that affect the environment with the aim of fostering environmental improvement. It involves the application of science and technology in the process of addressing environmental challenges through environmental conservation and the mitigation of human impact to the environment.

<span class="mw-page-title-main">District heating</span> Centralized heat distribution system

District heating is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels or biomass, but heat-only boiler stations, geothermal heating, heat pumps and central solar heating are also used, as well as heat waste from factories and nuclear power electricity generation. District heating plants can provide higher efficiencies and better pollution control than localized boilers. According to some research, district heating with combined heat and power (CHPDH) is the cheapest method of cutting carbon emissions, and has one of the lowest carbon footprints of all fossil generation plants.

Micro combined heat and power, micro-CHP, μCHP or mCHP is an extension of the idea of cogeneration to the single/multi family home or small office building in the range of up to 50 kW. Usual technologies for the production of heat and power in one common process are e.g. internal combustion engines, micro gas turbines, stirling engines or fuel cells.

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries, electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response, a type of energy demand management, seeks to adjust in real-time the demand for power instead of adjusting the supply.

<span class="mw-page-title-main">Zero-energy building</span> Energy efficiency standard for buildings

A Zero-Energy Building (ZEB), also known as a Net Zero-Energy (NZE) building, is a building with net zero energy consumption, meaning the total amount of energy used by the building on an annual basis is equal to the amount of renewable energy created on the site or in other definitions by renewable energy sources offsite, using technology such as heat pumps, high efficiency windows and insulation, and solar panels.

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

<span class="mw-page-title-main">Association for Environment Conscious Building</span> Professional association in the United Kingdom

The Association for Environment Conscious Building (AECB) is the leading network for sustainable building professionals in the United Kingdom. Membership of the AECB includes local authorities, housing associations, builders, architects, designers, consultants and manufacturers. The association was founded in 1989 to increase awareness within the construction industry of the need to respect, protect, preserve and enhance the environment and to develop, share and promote best practice in environmentally sustainable building.

<span class="mw-page-title-main">Efficient energy use</span> Methods for higher energy efficiency

Efficient energy use, or energy efficiency, is the process of reducing the amount of energy required to provide products and services. There are many technologies and methods available that are more energy efficient than conventional systems. For example, insulating a building allows it to use less heating and cooling energy while still maintaining a comfortable temperature. Another method is to remove energy subsidies that promote high energy consumption and inefficient energy use. Improved energy efficiency in buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third.

A solar controller is an electronic device that controls the circulating pump in a solar hot water system to harvest as much heat as possible from the solar panels and protect the system from overheating. The basic job of the controller is to turn the circulating pump on when there is heat available in the panels, moving the working fluid through the panels to the heat exchanger at the thermal store. Heat is available whenever the temperature of the solar panel is greater than the temperature of the water in the heat exchanger. Overheat protection is achieved by turning the pump off when the store reaches its maximum temperature and sometimes cooling the store by turning the pump on when the store is hotter than the panels.

A home fuel cell or a residential fuel cell is an electrochemical cell used for primary or backup power generation. They are similar to the larger industrial stationary fuel cells, but built on a smaller scale for residential use. These fuel cells are usually based on combined heat and power (CHP) or micro combined heat and power (m-CHP) technology, generating both power and heated water or air.

<span class="mw-page-title-main">Energy conservation in the United States</span> How power is used and saved by Americans

The United States is the second-largest single consumer of energy in the world. The U.S. Department of Energy categorizes national energy use in four broad sectors: transportation, residential, commercial, and industrial. Energy usage in transportation and residential sectors is largely controlled by individual domestic consumers. Commercial and industrial energy expenditures are determined by businesses entities and other facility managers. National energy policy has a significant effect on energy usage across all four sectors.

Zero-carbon housing is housing that does not emit greenhouse gasses (GHGs) into the atmosphere, either directly, or indirectly due to consumption electricity produced using fossil fuels. Most commonly zero-carbon housing is taken to mean zero emissions of carbon dioxide, which is the main climate pollutant from homes, although fugitive methane may also be emitted from natural gas pipes and appliances.

<span class="mw-page-title-main">Immersion cooling</span> IT cooling practice

Immersion cooling is an IT cooling practice by which servers are completely or partially immersed in a dielectric fluid that has significantly higher thermal conductivity than air. Heat is removed from the system by putting the coolant in direct contact with hot components, and circulating the heated liquid through heat exchangers. This practice is highly effective as liquid coolants can absorb more heat from the system than air. Immersion cooling has many benefits, including but not limited to: sustainability, performance, reliability, and cost.

References