This article needs additional citations for verification .(June 2021) |
Automobile accessory power can be transferred by several different means. However, it is always ultimately derived from the automobile's internal combustion engine, battery, or other "prime mover" source of energy. The advent of high-powered batteries in hybrid and all-electrical vehicles is shifting the balance of technologies even further in the direction of electrically powered accessories.
An engine has one or more devices for converting energy it produces into a usable form, electricity connection through the alternator, hydraulic connections from a pump or engine system, compressed air, and engine vacuum; or the engine may be directly tapped through a mechanical connection. Modern vehicles run most accessories on electrical power. Typically, only 2% of a vehicle's total power output has gone towards powering accessories. [1] Electrical and hybrid vehicles may use a larger proportion of energy for accessories, due to reduced inefficiencies in the drive train, especially the elimination of engine idling.
Some automobile accessories are connected directly to the engine through gears or belts. These usually require large amounts of power. The air conditioning compressor has been a familiar example, though new all-electric refrigerant compressors are starting to be used in production vehicles.
Early automobiles used a magneto for ignition, which provided no accessory power.
The first electrical accessory connection was supplied by a DC generator. Voltage varied with engine speed and because of technological limitations, complicated mechanical devices were used to regulate it. Even so, voltage at idle was too low to be useful. A lead-acid battery was used to provide proper voltage when the generator could not, and was recharged at higher engine speed or lower electrical load. The automobile self starter was an early engine system to use this.
Lighting, which had previously been provided by kerosene lamps or gas lamps, was one of the first common electrical accessories.
Early systems used 6 volts, but 12 volts became the standard because it provided greater power with less current. The original DC generator was replaced by an alternator controlled by a voltage regulator. [2] Due to mechanical and electrical properties, it is more efficient to first produce alternating current and then immediately convert it to direct current. By regulating the current sent to the alternator's rotor and thus the strength of the magnetic field, a stable voltage can be produced over a wider range of engine speeds.
Starting, lighting and ignition systems of most gasoline-powered vehicles remain as 12 volt systems. Diesel-powered vehicles, including mobile construction equipment and heavy trucks use 24 volt electrical systems, as do many military vehicles. Research is ongoing into adopting a 42-volt electrical system standard for automotive electricity, but the entire electrical system will have to be redesigned and new components manufactured to work with the higher voltage. The main advantage of higher voltage is that electrical components can be made with less metal, saving weight and cost, and improving energy efficiency. As such an 48-volt electrical system has been introduced.
Most modern systems, such as power windows, power seats, and power door locks, are electrically powered. Electrically driven power steering systems have been developed and are used in numerous models. High-efficiency all-electric refrigerant compressors for air conditioning are starting to be used, especially in hybrid or all-electric vehicles.
The cigarette lighter receptacle serves as a de facto standard for use of portable 12 volt equipment in or near an automobile, it is sometimes used with car charger to power devices with batteries. Anderson plug for high amperage.
The engine generally has a hydraulic pump mechanically driven by the engine, but there may also be electrically driven pumps.
In passenger cars, the most common use of hydraulic power has been the steering system. Convertible tops may be raised and lowered using hydraulics. Windshield wipers were sometimes hydraulically driven, although this use mostly ceased after the late 1960s. On vehicles with little or no engine vacuum, hydraulic systems are generally adopted in place of vacuum systems.
The French company Citroën devised a high-pressure hydraulics system for cars which was used for all manner of systems, even power-adjustable seats.
The 1999–2004 Jeep Grand Cherokee had a hydraulically driven radiator fan, powered by the SUV's power steering pump.
In vehicles such as heavy trucks and tractors, hydraulic systems are much more common. Hydraulic rams are used for accessories such as dump truck beds, cranes, loaders, and three-point hitches.
A commonly available source of power from an internal combustion engine is the partial vacuum available at the intake manifold. The piston engine is fundamentally an air pump, and it produces suction and partial manifold vacuum.
Manifold vacuum varies depending on engine load and throttle position, and automobiles use vacuum reservoirs or "vacuum canisters" to provide a usable source under varying conditions. Turbo charged and super charged engines do not always produce vacuum; the intake manifold is actually pressurized when the turbo is spinning above a certain speed.
Reservoirs and devices connected to the engine through check valves allow pressure to reduce when the engine is generating a lot of vacuum, but do not allow air back in. Vacuum canisters only allow vacuum accessories to be operated for a very short time, and air will leak in after the engine turns off.
The most ubiquitous vacuum-powered accessory is the booster for the power brake system. The vacuum is only an assist and the brakes can still function, requiring greater force, if the booster vacuum is used up.
Many older vehicles used vacuum-powered windshield wipers. Loss of manifold vacuum when the engine was working hard, or at wide open throttle, necessitated using a vacuum booster pump which was usually part of the fuel pump.
Automotive vacuum systems reached their height of use between the 1960s and 1980s. During this time a huge variety of vacuum switches, delay valves and accessory devices were created.
As an example, a 1967 Ford Thunderbird used vacuum for:
Such systems tend to be unreliable with age as the vacuum tubing becomes brittle and susceptible to leaks.
Pneumatic (compressed air) systems are rarely found in passenger cars. Larger vehicles often use air brakes and the pressure may be used to drive other systems. Windshield wipers, automatic gear boxes, and other common hydraulic or vacuum powered accessories are often adapted. On buses where the engine is often at the rear of the vehicle, compressed air may be used for the throttle and clutch.
Bus doors are typically air powered, as well as the steps and the suspension, allowing the bus to lower itself or "kneel" at stops to allow passengers on or off.
Central tire inflation system, differential lock, air suspension and to power pneumatic tools.
A brake is a mechanical device that inhibits motion by absorbing energy from a moving system. It is used for slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by means of friction.
Aircraft engine controls provide a means for the pilot to control and monitor the operation of the aircraft's powerplant. This article describes controls used with a basic internal-combustion engine driving a propeller. Some optional or more advanced configurations are described at the end of the article. Jet turbine engines use different operating principles and have their own sets of controls and sensors.
A windscreen wiper or windshield wiper is a device used to remove rain, snow, ice, washer fluid, water, or other debris from a vehicle's front window. Almost all motor vehicles, including cars, trucks, buses, train locomotives, and watercraft with a cabin—and some aircraft—are equipped with one or more such wipers, which are usually a legal requirement.
A serpentine belt is a single, continuous belt used to drive multiple peripheral devices in an automotive engine, such as an alternator, power steering pump, water pump, air conditioning compressor, air pump, etc. The belt may also be guided by an idler pulley and/or a belt tensioner.
Engine braking occurs when the retarding forces within an internal combustion engine are used to slow down a motor vehicle, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes.
Hybrid Synergy Drive (HSD), also known as Toyota Hybrid System II, is the brand name of Toyota Motor Corporation for the hybrid car drive train technology used in vehicles with the Toyota and Lexus marques. First introduced on the Prius, the technology is an option on several other Toyota and Lexus vehicles and has been adapted for the electric drive system of the hydrogen-powered Mirai, and for a plug-in hybrid version of the Prius. Previously, Toyota also licensed its HSD technology to Nissan for use in its Nissan Altima Hybrid. Its parts supplier Aisin offers similar hybrid transmissions to other car companies.
Manifold vacuum, or engine vacuum in a petrol engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.
The Learjet 25 is an American ten-seat, twin-engine, high-speed business jet aircraft manufactured by Learjet. It is a stretched version of the Learjet 24.
A retarder is a device used to augment or replace some of the functions of primary friction-based braking systems, usually on heavy vehicles. Retarders serve to slow vehicles, or maintain a steady speed while traveling down a hill, and help prevent the vehicle from unintentional or uncontrolled acceleration when travelling on a road surface with an uneven grade. They are not usually capable of bringing vehicles to a standstill, as their effectiveness diminishes as a vehicle's speed lowers. Instead, they are typically used as an additional aid to slow vehicles, with the final braking done by a conventional friction braking system. An additional benefit retarders are capable of providing is an increase in the service life of the friction brake, as it is subsequently used less frequently, particularly at higher speeds. Additionally, air actuated brakes serve a dual role in conserving air pressure.
The following outline is provided as an overview of and topical guide to automobiles:
An automobile auxiliary power outlet in an automobile was initially designed to power an electrically heated cigarette lighter, but became a de facto standard DC connector to supply electrical power for portable accessories used in or near an automobile directly from the vehicle's electrical system. Such include mobile phone chargers, cooling fans, portable fridges, electric air pumps, and power inverters.
A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device and a load device.
Aircraft systems are those required to operate an aircraft efficiently and safely. Their complexity varies with the type of aircraft.
Automotive electronics are electronic systems used in vehicles, including engine management, ignition, radio, carputers, telematics, in-car entertainment systems, and others. Ignition, engine and transmission electronics are also found in trucks, motorcycles, off-road vehicles, and other internal combustion powered machinery such as forklifts, tractors and excavators. Related elements for control of relevant electrical systems are also found on hybrid vehicles and electric cars.
In automobiles, a 42-volt electrical system was an electrical power standard proposed in the late 1990s. It was intended to facilitate increasingly-powerful electrically-driven accessories in automobiles, and lighter wiring harnesses. Electric motors were proposed to be used for power steering or other systems, providing more compact installations and eliminating the weight of drive belts or large wires for high-current loads.
An electric supercharger is a specific type of supercharger for internal combustion engines that uses an electrically powered forced-air system that contains an electric motor to pressurize the intake air. By pressurizing the air available to the engine intake system, the air becomes more dense, and is matched with more fuel, producing the increased horsepower to the wheels.
An alternator is a type of electric generator used in modern automobiles to charge the battery and to power the electrical system when its engine is running.
Car controls are the components in automobiles and other powered road vehicles, such as trucks and buses, used for driving and parking.
This glossary of automotive terms is a list of definitions of terms and concepts related to automobiles, including their parts, operation, and manufacture, as well as automotive engineering, auto repair, and the automotive industry in general. For more specific terminology regarding the design and classification of various automobile styles, see Glossary of automotive design; for terms related to transportation by road, see Glossary of road transport terms; for competitive auto racing, see Glossary of motorsport terms.