A cartogram (also called a value-area map or an anamorphic map, the latter common among German-speakers) is a thematic map of a set of features (countries, provinces, etc.), in which their geographic size is altered to be directly proportional to a selected variable, such as travel time, population, or gross national income. Geographic space itself is thus warped, sometimes extremely, in order to visualize the distribution of the variable. It is one of the most abstract types of map; in fact, some forms may more properly be called diagrams. They are primarily used to display emphasis and for analysis as nomographs. [1]
Cartograms leverage the fact that size is the most intuitive visual variable for representing a total amount. [2] In this, it is a strategy that is similar to proportional symbol maps, which scale point features, and many flow maps, which scale the weight of linear features. However, these two techniques only scale the map symbol, not space itself; a map that stretches the length of linear features is considered a linear cartogram (although additional flow map techniques may be added). Once constructed, cartograms are often used as a base for other thematic mapping techniques to visualize additional variables, such as choropleth mapping.
The cartogram was developed later than other types of thematic maps, but followed the same tradition of innovation in France. [3] The earliest known cartogram was published in 1876 by French statistician and geographer Pierre Émile Levasseur, who created a series of maps that represented the countries of Europe as squares, sized according to a variable and arranged in their general geographical position (with separate maps scaled by area, population, religious adherents, and national budget). [4] Later reviewers have called his figures a statistical diagram rather than a map, but Levasseur referred to it as a carte figurative, the common term then in use for any thematic map. He produced them as teaching aids, immediately recognizing the intuitive power of size as a visual variable: "It is impossible that the child is not struck by the importance of the trade of Western Europe in relation to that of Eastern Europe, that he does not notice how much England, which has a small territory but outweighs other nations by its wealth and especially by its navy, how much on the contrary Russia which, by its area and its population occupies the first rank, is still left behind by other nations in the commerce and navigation."
Levasseur's technique does not appear to have been adopted by others, and relatively few similar maps appear for many years. The next notable development was a pair of maps by Hermann Haack and Hugo Weichel of the 1898 election results for the German Reichstag in preparation for the 1903 election, the earliest known contiguous cartogram. [5] Both maps showed a similar outline of the German Empire, with one subdivided into constituencies to scale, and the other distorting the constituencies by area. The subsequent expansion of densely populated areas around Berlin, Hamburg, and Saxony was intended to visualize the controversial tendency of the mainly urban Social Democrats to win the popular vote, while the mainly rural Zentrum won more seats (thus presaging the modern popularity of cartograms for showing the same tendencies in recent elections in the United States). [6]
The continuous cartogram emerged soon after in the United States, where a variety appeared in the popular media after 1911. [7] [8] Most were rather crudely drawn compared to Haack and Weichel, with the exception of the "rectangular statistical cartograms" by the American master cartographer Erwin Raisz, who claimed to have invented the technique. [9] [10]
When Haack and Weichel referred to their map as a kartogramm, this term was commonly being used to refer to all thematic maps, especially in Europe. [11] [12] It was not until Raisz and other academic cartographers stated their preference for a restricted use of the term in their textbooks (Raisz initially espousing value-area cartogram) that the current meaning was gradually adopted. [13] [14]
The primary challenge of cartograms has always been the drafting of the distorted shapes, making them a prime target for computer automation. Waldo R. Tobler developed one of the first algorithms in 1963, based on a strategy of warping space itself rather than the distinct districts. [15] Since then, a wide variety of algorithms have been developed (see below), although it is still common to craft cartograms manually. [1]
Since the early days of the academic study of cartograms, they have been compared to map projections in many ways, in that both methods transform (and thus distort) space itself. [15] The goal of designing a cartogram or a map projection is therefore to represent one or more aspects of geographic phenomena as accurately as possible, while minimizing the collateral damage of distortion in other aspects. In the case of cartograms, by scaling features to have a size proportional to a variable other than their actual size, the danger is that the features will be distorted to the degree that they are no longer recognizable to map readers, making them less useful.
As with map projections, the tradeoffs inherent in cartograms have led to a wide variety of strategies, including manual methods and dozens of computer algorithms that produce very different results from the same source data. The quality of each type of cartogram is typically judged on how accurately it scales each feature, as well as on how (and how well) it attempts to preserve some form of recognizability in the features, usually in two aspects: shape and topological relationship (i.e., retained adjacency of neighboring features). [16] [17] It is likely impossible to preserve both of these, so some cartogram methods attempt to preserve one at the expense of the other, some attempt a compromise solution of balancing the distortion of both, and other methods do not attempt to preserve either one, sacrificing all recognizability to achieve another goal.
The area cartogram is by far the most common form; it scales a set of region features, usually administrative districts such as counties or countries, such that the area of each district is directly proportional to a given variable. Usually this variable represents the total count or amount of something, such as total Population, Gross domestic product, or the number of retail outlets of a given brand or type. Other strictly positive ratio variables can also be used, such as GDP per capita or Birth rate, but these can sometimes produce misleading results because of the natural tendency to interpret size as total amount. [2] Of these, total population is probably the most common variable, sometimes called an isodemographic map.
The various strategies and algorithms have been classified a number of ways, generally according to their strategies with respect to preserving shape and topology. Those that preserve shape are sometimes called equiform, although isomorphic (same-shape) or homomorphic (similar-shape) may be better terms. Three broad categories are widely accepted: contiguous (preserve topology, distort shape), non-contiguous (preserve shape, distort topology), and diagrammatic (distort both). Recently, more thorough taxonomies by Nusrat and Kobourov, Markowska, and others have built on this basic framework in an attempt to capture the variety in approaches that have been proposed and in the appearances of the results. [18] [19] The various taxonomies tend to agree on the following general types of area cartograms.
This is a type of contiguous cartogram that uses a single parametric mathematical formula (such as a polynomial curved surface) to distort space itself to equalize the spatial distribution of the chosen variable, rather than distorting the individual features. Because of this distinction, some have preferred to call the result a pseudo-cartogram. [20] Tobler's first computer cartogram algorithm was based on this strategy, [15] [21] for which he developed the general mathematical construct on which his and subsequent algorithms are based. [15] This approach first models the distribution of the chosen variable as a continuous density function (usually using a least squares fitting), then uses the inverse of that function to adjust the space such that the density is equalized. The Gastner-Newman algorithm, one of the most popular tools used today, is a more advanced version of this approach. [22] [23] Because they do not directly scale the districts, there is no guarantee that the area of each district is exactly equal to its value.
Also called irregular cartograms or deformation cartograms, [19] This is a family of very different algorithms that scale and deform the shape of each district while maintaining adjacent edges. This approach has its roots in the early 20th Century cartograms of Haack and Weichel and others, although these were rarely as mathematically precise as current computerized versions. The variety of approaches that have been proposed include cellular automata, quadtree partitions, cartographic generalization, medial axes, spring-like forces, and simulations of inflation and deflation. [18] Some attempt to preserve some semblance of the original shape (and may thus be termed homomorphic), [25] but these are often more complex and slower algorithms than those that severely distort shape.
This is perhaps the simplest method for constructing a cartogram, in which each district is simply reduced or enlarged in size according to the variable without altering its shape at all. [16] In most cases, a second step adjusts the location of each shape to reduce gaps and overlaps between the shapes, but their boundaries are not actually adjacent. While the preservation of shape is a prime advantage of this approach, the results often have a haphazard appearance because the individual districts do not fit together well.
In this approach, each district is replaced with a simple geometric shape of proportional size. Thus, the original shape is completely eliminated, and contiguity may be retained in a limited form or not at all. Although they are usually referred to as Dorling cartograms after Daniel Dorling's 1996 algorithm first facilitated their construction, [26] these are actually the original form of cartogram, dating back to Levasseur (1876) [4] and Raisz (1934). [9] Several options are available for the geometric shapes:
Because the districts are not at all recognizable, this approach is most useful and popular for situations in which the shapes would not be familiar to map readers anyway (e.g., U.K. parliamentary constituencies) or where the districts are so familiar to map readers that their general distribution is sufficient information to recognize them (e.g., countries of the world). Typically, this method is used when it is more important for readers to ascertain the overall geographic pattern than to identify particular districts; if identification is needed, the individual geometric shapes are often labeled.
In this approach (also called block or regular cartograms), each shape is not just scaled or warped, but is reconstructed from a discrete tessellation of space, usually into squares or hexagons. Each cell of the tessellation represents a constant value of the variable (e.g., 5000 residents), so the number of whole cells to be occupied can be calculated (although rounding error often means that the final area is not exactly proportional to the variable). Then a shape is assembled from those cells, usually with some attempt to retain the original shape, including salient features such as panhandles that aid recognition (for example, Long Island and Cape Cod are often exaggerated). Thus, these cartograms are usually homomorphic and at least partially contiguous.
This method works best with variables that are already measured as a relatively low-valued integer, enabling a one-to-one match with the cells. This has made them very popular for visualizing the United States Electoral College that determines the election of the president, appearing on television coverage and numerous vote-tracking websites. [27] Several examples of block cartograms were published during the 2016 U.S. presidential election season by The Washington Post, [28] the FiveThirtyEight blog, [29] and the Wall Street Journal, [30] among others. This is a cartogram for the 2024 and 2028 elections, based on the 2020 Census apportionment:
The major disadvantage of this type of cartogram has traditionally been that they had to be constructed manually, but recently algorithms have been developed to automatically generate both square and hexagonal mosaic cartograms. [31] [32]
While an area cartogram manipulates the area of a polygon feature, a linear cartogram manipulates linear distance on a line feature. The spatial distortion allows the map reader to easily visualize intangible concepts such as travel time and connectivity on a network. Distance cartograms are also useful for comparing such concepts among different geographic features. A distance cartogram may also be called a central-point cartogram.
A common use of distance cartograms is to show the relative travel times and directions from vertices in a network. For example, on a distance cartogram showing travel time between cities, the less time required to get from one city to another, the shorter the distance on the cartogram will be. When it takes a longer time to travel between two cities, they will be shown as further apart in the cartogram, even if they are physically close together.
Distance cartograms are also used to show connectivity. This is common on subway and metro maps, where stations and stops are shown as being the same distance apart on the map even though the true distance varies. Though the exact time and distance from one location to another is distorted, these cartograms are still useful for travel and analysis.
Both area and linear cartograms adjust the base geometry of the map, but neither has any requirements for how each feature is symbolized. This means that symbology can be used to represent a second variable using a different type of thematic mapping technique. [16] For linear cartograms, line width can be scaled as a flow map to represent a variable such as traffic volume. For area cartograms, it is very common to fill each district with a color as a choropleth map. For example, WorldMapper has used this technique to map topics relating to global social issues, such as poverty or malnutrition; a cartogram based on total population is combined with a choropleth of a socioeconomic variable, giving readers a clear visualization of the number of people living in underprivileged conditions.
Another option for diagrammatic cartograms is to subdivide the shapes as charts (commonly a pie chart), in the same fashion often done with proportional symbol maps. This can be very effective for showing complex variables such as population composition, but can be overwhelming if there are a large number of symbols or if the individual symbols are very small.
One of the first cartographers to generate cartograms with the aid of computer visualization was Waldo Tobler of UC Santa Barbara in the 1960s. Prior to Tobler's work, cartograms were created by hand (as they occasionally still are). The National Center for Geographic Information and Analysis located on the UCSB campus maintains an online Cartogram Central Archived 2016-10-05 at the Wayback Machine with resources regarding cartograms.
A number of software packages generate cartograms. Most of the available cartogram generation tools work in conjunction with other GIS software tools as add-ons or independently produce cartographic outputs from GIS data formatted to work with commonly used GIS products. Examples of cartogram software include ScapeToad, [33] [34] Cart, [35] and the Cartogram Processing Tool (an ArcScript for ESRI's ArcGIS), which all use the Gastner-Newman algorithm. [36] [37] An alternative algorithm, Carto3F, [38] is also implemented as an independent program for non-commercial use on Windows platforms. [39] This program also provides an optimization to the original Dougenik rubber-sheet algorithm. [40] [41] The CRAN package recmap provides an implementation of a rectangular cartogram algorithm. [42]
Year | Author | Algorithm | Type | Shape preservation | Topology preservation |
---|---|---|---|---|---|
1973 | Tobler | Rubber map method | area contiguous | with distortion | Yes, but not guaranteed |
1976 | Olson | Projector method | area noncontiguous | yes | No |
1978 | Kadmon, Shlomi | Polyfocal projection | distance radial | Unknown | Unknown |
1984 | Selvin et al. | DEMP (Radial Expansion) method | area contiguous | with distortion | Unknown |
1985 | Dougenik et al. | Rubber Sheet Distortion method [41] | area contiguous | with distortion | Yes, but not guaranteed |
1986 | Tobler | Pseudo-Cartogram method | area contiguous | with distortion | Yes |
1987 | Snyder | Magnifying glass azimuthal map projections | distance radial | Unknown | Unknown |
1989 | Colette Cauvin et al. | Piezopleth maps | area contiguous | with distortion | Unknown |
1990 | Torguson | Interactive polygon zipping method | area contiguous | with distortion | Unknown |
1990 | Dorling | Cellular Automata Machine method | area contiguous | with distortion | Yes |
1993 | Gusein-Zade, Tikunov | Line Integral method | area contiguous | with distortion | Yes |
1996 | Dorling | Circular cartogram | area noncontiguous | no (circles) | No |
1997 | Sarkar, Brown | Graphical fisheye views | distance radial | Unknown | Unknown |
1997 | Edelsbrunner, Waupotitsch | Combinatorial-based approach | area contiguous | with distortion | Unknown |
1998 | Kocmoud, House | Constraint-based approach | area contiguous | with distortion | Yes |
2001 | Keim, North, Panse | CartoDraw [43] | area contiguous | with distortion | Yes, algorithmically guaranteed |
2004 | Gastner, Newman | Diffusion-based method [44] | area contiguous | with distortion | Yes, algorithmically guaranteed |
2004 | Sluga | Lastna tehnika za izdelavo anamorfoz | area contiguous | with distortion | Unknown |
2004 | van Kreveld, Speckmann | Rectangular Cartogram [45] | area contiguous | no (rectangles) | No |
2004 | Heilmann, Keim et al. | RecMap [42] | area noncontiguous | no (rectangles) | No |
2005 | Keim, North, Panse | Medial-axis-based cartograms [46] | area contiguous | with distortion | Yes, algorithmically guaranteed |
2009 | Heriques, Bação, Lobo | Carto-SOM | area contiguous | with distortion | Yes |
2013 | Shipeng Sun | Opti-DCN [40] and Carto3F [38] | area contiguous | with distortion | Yes, algorithmically guaranteed |
2014 | B. S. Daya Sagar | Mathematical Morphology-Based Cartograms | area contiguous | with local distortion, but no global distortion | No |
2018 | Gastner, Seguy, More | Fast Flow-Based Method [22] | area contiguous | with distortion | Yes, algorithmically guaranteed |
A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database; however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.
In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.
In modern mapping, a topographic map or topographic sheet is a type of map characterized by large-scale detail and quantitative representation of relief features, usually using contour lines, but historically using a variety of methods. Traditional definitions require a topographic map to show both natural and artificial features. A topographic survey is typically based upon a systematic observation and published as a map series, made up of two or more map sheets that combine to form the whole map. A topographic map series uses a common specification that includes the range of cartographic symbols employed, as well as a standard geodetic framework that defines the map projection, coordinate system, ellipsoid and geodetic datum. Official topographic maps also adopt a national grid referencing system.
Waldo Rudolph Tobler was an American-Swiss geographer and cartographer. Tobler is regarded as one of the most influential geographers and cartographers of the late 20th century and early 21st century. He is most well known for coining what has come to be referred to as Tobler's first law of geography. He also coined what has come to be referred to as Tobler's second law of geography.
Animated mapping is the application of animation, either a computer or video, to add a temporal component to a map displaying change in some dimension. Most commonly the change is shown over time, generally at a greatly changed scale. An example would be the animation produced after the 2004 tsunami showing how the waves spread across the Indian Ocean.
A choropleth map is a type of statistical thematic map that uses pseudocolor, meaning color corresponding with an aggregate summary of a geographic characteristic within spatial enumeration units, such as population density or per-capita income.
A dasymetric map is a type of thematic map that uses areal symbols to visualize a geographic field by refining a choropleth map with ancillary information about the distribution of the variable. The name refers to the fact that the most common variable mapped using this technique has generally been population density. The dasymetric map is a hybrid product combining the strengths and weaknesses of choropleth and isarithmic maps.
Data and information visualization is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items. Typically based on data and information collected from a certain domain of expertise, these visualizations are intended for a broader audience to help them visually explore and discover, quickly understand, interpret and gain important insights into otherwise difficult-to-identify structures, relationships, correlations, local and global patterns, trends, variations, constancy, clusters, outliers and unusual groupings within data. When intended for the general public to convey a concise version of known, specific information in a clear and engaging manner, it is typically called information graphics.
A thematic map is a type of map that portrays the geographic pattern of a particular subject matter (theme) in a geographic area. This usually involves the use of map symbols to visualize selected properties of geographic features that are not naturally visible, such as temperature, language, or population. In this, they contrast with general reference maps, which focus on the location of a diverse set of physical features, such as rivers, roads, and buildings. Alternative names have been suggested for this class, such as special-subject or special-purpose maps, statistical maps, or distribution maps, but these have generally fallen out of common usage. Thematic mapping is closely allied with the field of Geovisualization.
Terrain cartography or relief mapping is the depiction of the shape of the surface of the Earth on a map, using one or more of several techniques that have been developed. Terrain or relief is an essential aspect of physical geography, and as such its portrayal presents a central problem in cartographic design, and more recently geographic information systems and geovisualization.
A bivariate map or multivariate map is a type of thematic map that displays two or more variables on a single map by combining different sets of symbols. Each of the variables is represented using a standard thematic map technique, such as choropleth, cartogram, or proportional symbols. They may be the same type or different types, and they may be on separate layers of the map, or they may be combined into a single multivariate symbol.
A flow map is a type of thematic map that uses linear symbols to represent movement between locations. It may thus be considered a hybrid of a map and a flow diagram. The movement being mapped may be that of anything, including people, highway traffic, trade goods, water, ideas, telecommunications data, etc. The wide variety of moving material, and the variety of geographic networks through they move, has led to many different design strategies. Some cartographers have expanded this term to any thematic map of a linear network, while others restrict its use to maps that specifically show movement of some kind.
A dot distribution map is a type of thematic map that uses a point symbol to visualize the geographic distribution of a large number of related phenomena. Dot maps are a type of unit visualizations that rely on a visual scatter to show spatial patterns, especially variances in density. The dots may represent the actual locations of individual phenomena, or be randomly placed in aggregation districts to represent a number of individuals. Although these two procedures, and their underlying models, are very different, the general effect is the same.
A map symbol or cartographic symbol is a graphical device used to visually represent a real-world feature on a map, working in the same fashion as other forms of symbols. Map symbols may include point markers, lines, regions, continuous fields, or text; these can be designed visually in their shape, size, color, pattern, and other graphic variables to represent a variety of information about each phenomenon being represented.
A software map represents static, dynamic, and evolutionary information of software systems and their software development processes by means of 2D or 3D map-oriented information visualization. It constitutes a fundamental concept and tool in software visualization, software analytics, and software diagnosis. Its primary applications include risk analysis for and monitoring of code quality, team activity, or software development progress and, generally, improving effectiveness of software engineering with respect to all related artifacts, processes, and stakeholders throughout the software engineering process and software maintenance.
Map layout, also called map composition or (cartographic) page layout, is the part of cartographic design that involves assembling various map elements on a page. This may include the map image itself, along with titles, legends, scale indicators, inset maps, and other elements. It follows principles similar to page layout in graphic design, such as balance, gestalt, and visual hierarchy. The term map composition is also used for the assembling of features and symbols within the map image itself, which can cause some confusion; these two processes share a few common design principles but are distinct procedures in practice. Similar principles of layout design apply to maps produced in a variety of media, from large format wall maps to illustrations in books to interactive web maps, although each medium has unique constraints and opportunities.
A Chorochromatic map, also known as an area-class, qualitative area, or mosaic map, is a type of thematic map that portray regions of categorical or nominal data using variations in color symbols. Chorochromatic maps are typically used to represent discrete fields, also known as categorical coverages. Chorochromatic maps differ from choropleth maps in that chorochromatic maps are mapped according to data-driven boundaries instead of trying to make the data fit within existing, sometimes arbitrary units such as political boundaries.
Cartographic design or map design is the process of crafting the appearance of a map, applying the principles of design and knowledge of how maps are used to create a map that has both aesthetic appeal and practical function. It shares this dual goal with almost all forms of design; it also shares with other design, especially graphic design, the three skill sets of artistic talent, scientific reasoning, and technology. As a discipline, it integrates design, geography, and geographic information science.
Typography, as an aspect of cartographic design, is the craft of designing and placing text on a map in support of the map symbols, together representing geographic features and their properties. It is also often called map labeling or lettering, but typography is more in line with the general usage of typography. Throughout the history of maps to the present, their labeling has been dependent on the general techniques and technologies of typography.
A proportional symbol map or proportional point symbol map is a type of thematic map that uses map symbols that vary in size to represent a quantitative variable. For example, circles may be used to show the location of cities within the map, with the size of each circle sized proportionally to the population of the city. Typically, the size of each symbol is calculated so that its area is mathematically proportional to the variable, but more indirect methods are also used.