Caspian cobra

Last updated

Caspian cobra
Naja oxiana Caspian cobra in a defensive posture.jpg
CITES Appendix II (CITES) [2]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Suborder: Serpentes
Family: Elapidae
Genus: Naja
Species:
N. oxiana
Binomial name
Naja oxiana
(Eichwald, 1831) [3]
South West Asia location-Naja-oxiana.svg
Naja oxiana distribution
Synonyms [4]
  • Naja naja subsp. oxiana(Eichwald, 1831)
  • Naja tripudians var. caecaBoulenger, 1896
  • Tomyris oxianaEichwald, 1831

The Caspian cobra (Naja oxiana), also called the Central Asian cobra or Russian cobra, is a species of highly venomous snake in the family Elapidae. The species is endemic to Central Asia. First described by Karl Eichwald, a German physician, in 1831, it was for many years considered to be a subspecies of the Naja naja until genetic analysis revealed it to be a distinct species.

Contents

Taxonomy

Karl Eichwald, a Baltic German, having been born modern day Saint Petersburg, Russia, who was a physician and naturalist first described the Caspian cobra originally as Tomyris oxiana in 1831. [5] Russian naturalist Alexander Strauch placed it in the genus Naja in 1868. The generic name naja is a Latinisation of the Sanskrit word nāgá ( नाग ) meaning "cobra". The specific epithet oxiana is derived from the word Ōxus in Latin or Ὦξος (Ôxos) in Greek, [6] and refers to the ancient name of the river Amu Darya which flows along Afghanistan`s northern border separating it from Tajikistan and Uzbekistan before turning northwest into Turkmenistan and flows from there into the southern remnants of the Aral Sea in Central Asia ( Transoxiana ), where this species occurs. For most of the twentieth century, all Asiatic cobras were considered to be subspecies of the Indian cobra (Naja naja); during this period, the subspecific names N. naja oxiana and N. naja caeca were applied to plain-scaled populations of N. naja from the north of India as well as populations corresponding to the Caspian cobra. Highly variable coloration and size within individual species made classification difficult until the advent of genetic analysis. [7]

A mitochondrial DNA study of Asiatic cobras in the subgenus Naja showed the Caspian cobra diverged from a lineage that gave rise to the monocled cobra (Naja kaouthia) and the Andaman cobra (Naja sagittifera) around 3.21 million years ago. The species itself appears to be genetically homogeneous despite population separation caused by the Hindu Kush mountains; this suggests a recent rapid range expansion. [8]

Naja
(Naja)

Description

A Caspian cobra Naja oxiana (1).jpg
A Caspian cobra

Naja oxiana is medium in length, a heavy-bodied snake with long cervical ribs capable of expansion to form a hood. Anteriorly, the body is depressed dorsoventrally, and posteriorly it is subcylindrical. This species is similar in size to Naja naja, averaging about 1 to 1.4 m (3.3 to 4.6 ft) [9] [10] in total length (including tail) and rarely reaches lengths over 1.7 m (5.6 ft). [9] [11] The head is elliptical, depressed, and slightly distinct from the neck, with a short, rounded snout and large nostrils. The eye is medium in size with a round pupil. The dorsal scales are smooth and strongly oblique, with the outer two or three scale rows larger than the remainder. [12] The hood of N. oxiana has an elongated, gradually tapering shape in contrast to the more ovoid hoods of some other Naja species (Naja naja or Naja kaouthia). [10] Juveniles tend to be pale, with a faded appearance. Juveniles have noticeable dark and light cross-bands of approximately equal width around the body. Adults of this species are completely light to chocolate brown or yellowish, with some specimens retaining traces of juvenile banding, especially the first few dark ventral bands. This species has no hood marks and no lateral throat spots. [11]

Confusions may exist with the Indian cobra (Naja naja), as specimens without a hood mark are usually confused with this species, and these two species coexist in Pakistan and northern India. The Caspian cobra (Naja oxiana) is never fully black, although some specimens may be quite dark. The Caspian cobra (N. oxiana) normally has several dark bands under the throat, whereas in the black phase of the Indian cobra (N. naja) from Pakistan, almost the entire throat is black. [13] The hood has an elongate, gradually tapering shape in contrast to the more ovoid hoods of some other Naja species (Naja naja or Naja kaouthia). [10]

Scalation

The number and pattern of scales on a snake's body are a key element of identification to species level. [14] Naja oxiana has 23 to 27 (usually 25) dorsal scale rows at the hood, 19–23 (usually 21) just ahead of midbody, 191–210 ventrals, and 57–71 paired subcaudals; cuneate scales (small angular scales between the labials) are often absent. [11]

Distribution and habitat

Naja oxiana occurs in the Transcaspian region. It is found throughout Turkmenistan, Uzbekistan, Kyrgyzstan, southwestern Tajikistan, the Fergana Valley, north and east Afghanistan, northeastern Iran. In Iran, it occurs from East Azerbaijan Province, southern half of Ardabil Province to the Provinces of Zanjan and Tehran all the way to the eastern half of both Isfahan and Yazd Provinces, as well the northeastern parts of Kerman Province, northern part of Sistan and Baluchistan Province, throughout the Provinces of Semnan, Mazandaran, and Golestan the entire former Province of Khorasan, which was split into three separate provinces post-2004). Although this species is found throughout much of Pakistan, from Balochistan and Sindh to Gilgit-Baltistan and Azad Kashmir, [12] it is far more common in the northern half of Pakistan. This species has also been observed in far northwest India in Jammu and Kashmir (union territory) and also been observed in the state of Himachal Pradesh. It's also highly suspected to have occurred in Ladakh, [11] and in the Indian state of Punjab. [12] [11] There is also anecdotal evidence of it ranging as far north as Kazakhstan's southern border with Uzbekistan, according to Brian Hayes, a biochemical engineer with the United States Threat Reduction Agency. Hayes led an expedition to Vozrozhdeniye Island in the Aral Sea in the summer of 2002 to bury anthrax on the island, which is located in the Aral Sea and is split between Uzbekistan and Kazakhstan, with the northern half of the island belonging to Kazakhstan. Mr. Hayes mentioned a 2.4 m (7.9 ft) long cobra that was observed and shot near the tents where the staff lived. “In all, we had run-ins with about 25 poisonous snakes”. [15] The only "cobra” species which occurs in this region is Naja oxiana, so any “cobra” observed in Kazakhstan would likely be of this species.[ citation needed ]

Naja oxiana is often found in arid and semiarid, rocky or stony, shrub- or scrub-covered foothills [12] at elevations up to about 3,000 m (9,800 ft) above sea level. This is also the westernmost species of Asiatic cobra. [16]

Ecology

Behavior

Naja oxiana tends to avoid humans as much as it can, but it can become fiercely defensive when threatened or cornered, and even juveniles tend to be very aggressive. When cornered and provoked, it is liable to spread its hood, hiss, sway from side to side and strike repeatedly; however, it can not spit venom. This terrestrial species is mainly diurnal, but it may be crepuscular and nocturnal in some parts of its range during the hottest month (July). Caspian cobras are good climbers, and able swimmers. The Caspian cobra is often found in water and seldom found too far away from it. [12] [10] Quick-moving and agile, this species lives in holes in embankments or trees. [16]

Diet

The Caspian Cobra feeds mostly on small mammals, amphibians, occasionally fish, birds and their eggs. It also reportedly feeds on other snakes. [17] [12] [10]

Venom

Composition

The Caspian cobra is considered to be the most venomous species of cobra in the world. Several different toxinological studies suggest this, including one particular study reported in the Indian Journal of Experimental Biology in 1992. [18] A study analyzing the toxic fractions of Naja oxiana venom from Iran indicated that toxic fractions constituted 78% by weight of crude venom of this species, [19] similar to Naja naja . [20] The toxic fractions were composed of three protein families, among which the 3FTs was dominant, similar to all other Naja species. The venom of N. oxiana was rich in short neurotoxins, which make up the majority of crude venom. [19] A number of small nonenzymatic proteins are found in the venom, including neurotoxins and members of the cytotoxin family, [21] which have been shown to cause cell death through damage to lysosomes. [22]

In addition to nonenzymatic proteins, the venom also contains nucleases, which cause tissue damage at the site of the bite and may also potentiate systemic toxicity by releasing free purines in situ. [23] A ribonuclease isolated and purified from Caspian cobra venom, ribonuclease V1, is commonly used as a laboratory reagent in molecular biology experiments due to its unusual ability to break down structured RNA. [24]

N. oxiana is one of the most dangerous snakes belonging to the elapidae family. Two main toxins as well as a number of minor components and three basic polypeptides similar to cardiotoxins (CTXs) and cytotoxins were isolated from the crude venom of this species, with acute effects on cardiac system during the first few hours post-envenomation. There are a few case reports of acute myocardial infarction (MI) following bites from elapids. At least one case of myocardial infarction following a bite from a Caspian cobra is recorded. [25]

Toxic effects

Naja oxiana is regarded as the most dangerous snake in Central Asia and is one of the venomous snakes with a high mortality rate. [26] It is one of the most dangerous elapid species in the world. [25] A bite from this species will cause severe pain and swelling at the site of the bite, along with the rapid onset of prominent neurotoxicity. Weakness, drowsiness, ataxia, hypotension, and paralysis of the throat and limbs may appear in less than one hour after the bite. In a study, the first signs and symptoms of envenomation appeared within 15 minutes post-envenomation. Without medical treatment, symptoms rapidly worsen and death can occur soon after a bite due to respiratory failure. [16] As with all species of cobra, there is great variation in venom toxicity and composition based on diet and geographical location. Venom toxicity is highest (least lethal) among specimens in the eastern parts of their geographical range (Indian and Pakistani specimens) with a value of around 0.2 mg/kg. Specimens from Iran, Uzbekistan, northeastern Afghanistan, and Turkmenistan can have considerably more potent venoms. The onset of symptoms is rapid and are extremely painful. Without treatment, death is likely and depending on the nature of the bite, the potency of the venom and the amount, death can occur in as little as 45 minutes or may be prolonged for up to 24 hours. [25]

According to a 2019 study by Kazemi-Lomedasht et al., the murine LD50 via subcutaneous injection value for Naja oxiana (Iranian specimens) was estimated to be 0.14 mg/kg (0.067-0.21 mg/kg) [26] more potent than the sympatric Pakistani Naja naja karachiensis (0.22 mg/kg), the Thai Naja kaouthia (0.2 mg/kg), and Naja philippinensis at 0.18 mg/kg (0.11-0.3 mg/kg) [27] An older study by Zug et al listed a LD50 value of 0.2 mg/kg from Pakistani and Indian specimens. [28] Average venom yield per bite for this species is between 75 and 125 mg (dry weight), [12] while in other parts of its distribution venom yield average is between 150 and 225 mg (dry weight). [26] The highest single bite yields are between 590 [29] and 784 mg (dry weight). [26] The crude venom of N. oxiana has a lowest published lethal dose (LCLo) of 0.005 mg/kg, the lowest among all cobra species, derived from an individual case of poisoning by intracerebroventricular injection. [30]

Between 1979 and 1987, 136 confirmed bites were attributed to this species in the former Soviet Union. Of the 136, 121 received antivenom, and only 8 died (6.6%). Of the 15 who did not receive antivenom, 11 died (an untreated mortality rate of 73%). [31] [32] In Iran, where the Caspian cobra is widespread, it is responsible for the highest number of deaths due to snakebite in the country. The Levant viper, Saw-scaled viper, and the Persian horned viper are responsible for more snakebite incidents, but they have a lower mortality rate compared to N. oxiana. Multiplying habitat suitability models of the four snakes showed that the northeast of Iran (west of Khorasan-e-Razavi province) has the highest snakebite risk in the country. In addition, villages that were at risk of envenoming from the four snakes were identified. Results revealed that 51,112 villages are at risk of envenoming from M. lebetinus (Levant viper), 30,339 from E. carinatus (saw-scaled viper), 51,657 from P. persicus (Persian horned viper) and 12,124 from N. oxiana (Caspian cobra). A study reported 53,787 cases of bites by venomous snakes between 2002 and 2011 in Iran, with the highest rate of snakebite incidents being found in provinces in the south and southwest of Iran. [33] Out of the 53,787 cases of snake bites which were reported to medical centers in Iran, only 118 were correctly identified as bites by this species. In total there were 67 deaths, 51 of which were due to N. oxiana. Out of the 51 bites, 46 didn't receive medical treatment. One 10-year-old male died en route to the closest hospital ~35 minutes post-envenomation. Five were treated with antivenom, but succumbed to the venom regardless of the fact (~7% mortality despite treatment). Untreated mortality rates seem to be particularly high for a species within the genus Naja, at around ~80%. [33] [34] [35] In Pakistan, it is responsible for high rates of snakebites that result in mortality. [16] Reliable figures on incidence, morbidity and mortality are limited but almost 40,000 biting cases are reported annually which result in up to 8,200 fatalities in one study. An estimate of annual mortality rate in Pakistan is around 1.9 per 100,000 population. In one survey, it was reported that out of 5,337 envenomed patients, 57% were cobra victims and the remaining rest of 35% were bitten by kraits and vipers. Of the 5,337 envenomed patients, there were 3,064 cobra (N. naja and N. oxiana) victims. Out of the 3,064 bitten by cobras (841 correctly identified as N. naja, and 384 were correctly identified as N. oxiana). There were 78 untreated cases, of which 64 were fatal (82%), much higher than untreated cases for N. naja (33.6%). [29] [36] A woman bitten by this species in northwestern Pakistan suffered prominent neurotoxicity and died while en route to the closest hospital nearly 50 minutes after envenomation (death occurred 45–50 minutes post envenomation). [34] Antivenom is not as effective for envenomation by this species as it is for other Asiatic cobras within the same region, like the Indian cobra (N. naja), and due to the dangerous toxicity of this species' venom, massive amounts of antivenom are often required for patients. As a result, a monovalent antivenom serum is being developed by the Razi Vaccine and Serum Research Institute in Iran. Response to treatment with antivenom is generally poor among patients, so mechanical ventilation and endotracheal intubation is required. As a result, mortality among those treated for N. oxiana envenomation is still relatively high (up to 30%) compared to all other species of cobra (<1%). [29]

Related Research Articles

<span class="mw-page-title-main">King cobra</span> Venomous snake species from Asia

The king cobra is a venomous snake endemic to Asia. The sole member of the genus Ophiophagus, it is not taxonomically a true cobra, despite its common name and some resemblance. With an average length of 3.18 to 4 m and a record length of 5.85 m (19.2 ft), it is the world's longest venomous snake. The species has diversified colouration across habitats, from black with white stripes to unbroken brownish grey. The king cobra is widely distributed albeit not commonly seen, with a range spanning from the Indian Subcontinent through Southeastern Asia to Southern China. It preys chiefly on other snakes, including those of its own kind. This is the only ophidian that constructs an above-ground nest for its eggs, which are purposefully and meticulously gathered and protected by the female throughout the incubation period.

<span class="mw-page-title-main">Mamba</span> Genus of venomous snakes

Mambas are fast-moving, highly venomous snakes of the genus Dendroaspis in the family Elapidae. Four extant species are recognised currently; three of those four species are essentially arboreal and green in colour, whereas the black mamba, Dendroaspis polylepis, is largely terrestrial and generally brown or grey in colour. All are native to various regions in sub-Saharan Africa and all are feared throughout their ranges, especially the black mamba. In Africa there are many legends and stories about mambas.

<i>Acanthophis</i> Genus of elapid snakes commonly called death adders

Acanthophis is a genus of elapid snakes. Commonly called death adders, they are native to Australia, New Guinea and nearby islands, and are among the most venomous snakes in the world. Despite their common name, they are not adders at all and belong to the Elapidae family. The name of the genus derives from the Ancient Greek akanthos/ἄκανθος ('spine') and ophis/ὄφις ('snake'), referring to the spine on the death adder's tail.

<span class="mw-page-title-main">Snakebite</span> Injury caused by bite from snakes

A snakebite is an injury caused by the bite of a snake, especially a venomous snake. A common sign of a bite from a venomous snake is the presence of two puncture wounds from the animal's fangs. Sometimes venom injection from the bite may occur. This may result in redness, swelling, and severe pain at the area, which may take up to an hour to appear. Vomiting, blurred vision, tingling of the limbs, and sweating may result. Most bites are on the hands, arms, or legs. Fear following a bite is common with symptoms of a racing heart and feeling faint. The venom may cause bleeding, kidney failure, a severe allergic reaction, tissue death around the bite, or breathing problems. Bites may result in the loss of a limb or other chronic problems or even death.

<span class="mw-page-title-main">Snake venom</span> Highly modified saliva containing zootoxins

Snake venom is a highly toxic saliva containing zootoxins that facilitates in the immobilization and digestion of prey. This also provides defense against threats. Snake venom is usually injected by unique fangs during a bite, though some species are also able to spit venom.

<span class="mw-page-title-main">Indian cobra</span> Species of snake

The Indian cobra, also known commonly as the spectacled cobra, Asian cobra, or binocellate cobra, is a species of cobra, a venomous snake in the family Elapidae. The species is native to the Indian subcontinent, and is a member of the "big four" species that are responsible for the most snakebite cases in India.

<span class="mw-page-title-main">Monocled cobra</span> Species of snake

The monocled cobra, also called monocellate cobra and Indian spitting cobra, is a venomous cobra species widespread across South and Southeast Asia and listed as Least Concern on the IUCN Red List.

<span class="mw-page-title-main">Cape cobra</span> Species of snake

The Cape cobra, also called the yellow cobra, is a moderate-sized, highly venomous species of cobra inhabiting a wide variety of biomes across southern Africa, including arid savanna, fynbos, bushveld, desert, and semidesert regions.

<span class="mw-page-title-main">Philippine cobra</span> Species of snake

The Philippine cobra also called Philippine spitting cobra or northern Philippine cobra, is a stocky, highly venomous species of spitting cobra native to the northern regions of the Philippines. The Philippine cobra is called ulupong in Tagalog, carasaen in Ilocano.

<i>Naja</i> Genus of snakes

Naja is a genus of venomous elapid snakes commonly known as cobras. Members of the genus Naja are the most widespread and the most widely recognized as "true" cobras. Various species occur in regions throughout Africa, Southwest Asia, South Asia, and Southeast Asia. Several other elapid species are also called "cobras", such as the king cobra and the rinkhals, but neither is a true cobra, in that they do not belong to the genus Naja, but instead each belong to monotypic genera Hemachatus and Ophiophagus.

<span class="mw-page-title-main">Chinese cobra</span> Species of snake

The Chinese cobra, also called the Taiwan cobra, is a species of cobra in the family Elapidae, found mostly in southern China and a couple of neighboring nations and islands. It is one of the most prevalent venomous snakes in China, which has caused many snakebite incidents to humans.

<span class="mw-page-title-main">Egyptian cobra</span> Species of reptile (snake)

The Egyptian cobra is one of the most venomous species of snakes in North Africa, and has caused many snakebite incidents to humans. It averages roughly 1.4 metres (4.6 ft), with the longest recorded specimen measuring 2.59 metres (8.5 ft).

<i>Naja ashei</i> Species of snake

Naja ashei, commonly known as Ashe's spitting cobra or the giant spitting cobra, is a species of venomous snake in the family Elapidae. The species is native to Africa. It is the world's largest species of spitting cobra.

<span class="mw-page-title-main">Indochinese spitting cobra</span> Species of snake

The Indochinese spitting cobra also called the Thai spitting cobra, black and white spitting cobra, Siamese spitting cobra, is a species of spitting cobra found in Southeast Asia.

<span class="mw-page-title-main">Forest cobra</span> Species of snake

The forest cobra, also commonly called the black cobra and the black and white-lipped cobra, is a species of highly venomous snake in the family Elapidae. The species is native to Africa, mostly the central and western parts of the continent. It is the largest true cobra species with a record length of 3.2 metres.

<span class="mw-page-title-main">Epidemiology of snakebites</span>

Most snakebites are caused by non-venomous snakes. Of the roughly 3,700 known species of snake found worldwide, only 15% are considered dangerous to humans. Snakes are found on every continent except Antarctica. There are two major families of venomous snakes, Elapidae and Viperidae. 325 species in 61 genera are recognized in the family Elapidae and 224 species in 22 genera are recognized in the family Viperidae, In addition, the most diverse and widely distributed snake family, the colubrids, has approximately 700 venomous species, but only five genera—boomslangs, twig snakes, keelback snakes, green snakes, and slender snakes—have caused human fatalities.

<i>Naja christyi</i> Species of snake

Naja christyi, commonly known as the Congo water cobra or Christy's water cobra, is a species of venomous snakes belonging to the family Elapidae. The species is native to Sub-Saharan Africa.

<span class="mw-page-title-main">Andaman cobra</span> Species of snake

The Andaman cobra or Andaman spitting cobra is a species of cobra endemic to the Andaman Islands of India. The name of this cobra comes from the Islands itself. The species has a very potent venom, and is capable of “spitting”, although this defensive behavior is very rare and the aim is poor and not as efficient as “true spitting cobras”.

<span class="mw-page-title-main">Javan spitting cobra</span> Species of snake

The Javan spitting cobra, also called Indonesian cobra or Komodo spitting cobra, is a species of cobra in the family Elapidae, found in the Lesser Sunda Islands of Indonesia, including Java, Bali, Lombok, Sumbawa, Flores, Komodo, and others.

References

  1. Ananjeva, N.B., Orlov, N.L., Nilson, G., Papenfuss, T., Borkin, L., Milto, K., Golynsky, E., Rustamov, A, Nuridjanov, D., Munkhbayar, K., Murthy, B.H.C. & Mohapatra, P. (2021). "Naja oxiana". IUCN Red List of Threatened Species . 2021: e.T164642A1063259. doi: 10.2305/IUCN.UK.2021-3.RLTS.T164642A1063259.en . Retrieved 19 November 2021.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. "Appendices | CITES". cites.org. Retrieved 2022-01-14.
  3. "Naja oxiana (Eichwald, 1831)". ITIS Standard Report Page. ITIS.gov. Retrieved 13 January 2012.
  4. "Naja oxiana (Eichwald, 1831)". Global Biodiversity Information Facility . Retrieved 16 May 2023.
  5. Eichwald, Karl (1931). Zoologia specialis, quam expositis animalibus tum vivis, tum fossilibus potissimuni rossiae in universum, et poloniae in specie, in usum lectionum publicarum in Universitate Caesarea Vilnensi (in Latin). Vol. 3. Vilnius: Zawadski. p. 171.
  6. Lewis, CT. "Oxos". Clarendon Press. Retrieved 13 December 2021.
  7. Wüster, Wolfgang (1996). "Taxonomic changes and toxinology: Systematic revisions of the asiatic cobras (Naja naja species complex)". Toxicon. 34 (4): 399–406. Bibcode:1996Txcn...34..399W. doi:10.1016/0041-0101(95)00139-5. ISSN   0041-0101. PMID   8735239.
  8. Kazemi, Elmira; Nazarizadeh, Masoud; Fatemizadeh, Faezeh; Khani, Ali; Kaboli, Mohammad (2021). "The phylogeny, phylogeography, and diversification history of the westernmost Asian cobra (Serpentes: Elapidae: Naja oxiana) in the Trans-Caspian region". Ecology and Evolution. 11 (5): 2024–2039. Bibcode:2021EcoEv..11.2024K. doi:10.1002/ece3.7144. ISSN   2045-7758. PMC   7920780 . PMID   33717439.
  9. 1 2 United States. Navy Department. Bureau of Medicine and Surgery (January 1965). Poisonous Snakes of the World: A Manual for Use by the U.S. Amphibious Forces (2 ed.). Minnesota: U.S. Government Printing Office. pp. 123–124. Retrieved 26 January 2022.
  10. 1 2 3 4 5 Nasoori, A; Shahbazzadeh, D; Tsubota, T; Young, BA (2016). "The defensive behaviour of Naja oxiana, with comments on the visual displays of cobras". The Herpetological Bulletin. 138: 13–17. Retrieved 26 January 2022.
  11. 1 2 3 4 5 "Species of Asiatic Naja". The Asiatic Cobra Systematics Page. Bangor University. Retrieved 13 January 2012.
  12. 1 2 3 4 5 6 7 "Naja oxiana - General Details, Taxonomy and Biology, Venom, Clinical Effects, Treatment, First Aid, Antivenoms". WCH Clinical Toxinology Resource. University of Adelaide. Retrieved 13 January 2012.
  13. "Naja oxiana". Venom Street. Collector and Breeder of Asian Cobras. Venom Street. Archived from the original on 21 October 2014. Retrieved 3 February 2012.
  14. Hutchinson, Mark; Williams, Ian (2018). "Key to the Snakes of South Australia" (PDF). South Australian Museum. Government of South Australia. Retrieved 8 February 2019.
  15. Pala, Christopher (22 March 2003). "Anthrax buried for good". The Washington Times. Archived from the original on 26 March 2023 via University of California, Los Angeles Department of Epidemiology.
  16. 1 2 3 4 "Naja oxiana". Armed Forces Pest Management Board. United States Department of Defense. Archived from the original on 11 January 2012. Retrieved 14 January 2012.
  17. Bhardwaj, Virender Kumar; Kapoor, Rakeshwar (2022-07-22). "A report on ophiophagy observed in Naja oxiana (Eichwald, 1831) from Himachal Pradesh, India". Hamadryad. 39 (1).
  18. Khare AD, Khole V, Gade PR (December 1992). "Toxicities, LD50 prediction and in vivo neutralisation of some elapid and viperid venoms". Indian Journal of Experimental Biology. 30 (12): 1158–62. PMID   1294479.
  19. 1 2 Samianifard, M; Nazari, A; Tahoori, F; Mohammadpour Dounighi, N (1 March 2021). "Proteome Analysis of Toxic Fractions of Iranian Cobra (Naja naja Oxiana) Snake Venom Using Two-Dimensional Electrophoresis and Mass Spectrometry". Archives of Razi Institute. 76 (1): 127–138. doi:10.22092/ari.2020.128766.1428. PMC   8410206 . PMID   33818965.
  20. Dutta, S; Chanda, A; Kalita, B; Islam, T; Patra, A; Mukherjee, AK (6 March 2017). "Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties". Journal of Proteomics. 156: 29–39. doi:10.1016/j.jprot.2016.12.018. PMID   28062377 . Retrieved 28 December 2021.
  21. Dementieva, Daria V.; Bocharov, Eduard V.; Arseniev, Alexander S. (1999). "Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution. Spatial structures with tightly bound water molecules". European Journal of Biochemistry. 263 (1): 152–162. doi: 10.1046/j.1432-1327.1999.00478.x . PMID   10429199.
  22. Sharonov, George V.; Feofanov, Alexei V.; Astapova, Maria V.; Rodionov, Dmitriy I.; Utkin, Yuriy N.; Arseniev, Alexander S. (2005). "Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage". Biochemical Journal. 390 (1): 11–18. doi:10.1042/BJ20041892. PMC   1184559 . PMID   15847607.
  23. Dhananjaya BL, D'souza CJ (2010). "An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms". Biochemistry (Moscow). 75 (1): 1–6. doi:10.1134/S0006297910010013. PMID   20331418. S2CID   37575193.
  24. Ying, Shao Yao, ed. (2006). MicroRNA Protocols . Humana Press. p.  23. ISBN   9781597451239 . Retrieved 28 January 2015.
  25. 1 2 3 Angaji, SA; Houshmandi, A; Zare Mirakabadi, A (December 2016). "Acute Effects of the Iranian Snake (Naja Naja Oxiana) Venom on Heart" (PDF). Biomacromolecular Journal. 2 (2): 97–101.
  26. 1 2 3 4 Kazemi-Lomedasht, F; Yamabhai, M; Sabatier, J; Behdani, M; Zareinejad, MR; Shahbazzadeh, D (5 December 2019). "Development of a human scFv antibody targeting the lethal Iranian cobra (Naja oxiana) snake venom". Toxicon. 171: 78–85. Bibcode:2019Txcn..171...78K. doi:10.1016/j.toxicon.2019.10.006. PMID   31622638. S2CID   204772656 . Retrieved 28 December 2021.
  27. Wong, KY; Tan, CH; Tan, NH (3 January 2019). "Venom and Purified Toxins of the Spectacled Cobra (Naja naja) from Pakistan: Insights into Toxicity and Antivenom Neutralization". The American Journal of Tropical Medicine and Hygiene. 94 (6): 1392–1399. doi:10.4269/ajtmh.15-0871. PMC   4889763 . PMID   27022154.
  28. Zug, George R. [in German] (1996). Snakes in Question: The Smithsonian Answer Book . Washington, District of Columbia: Smithsonian Institution Scholarly Press. ISBN   978-1-56098-648-5.
  29. 1 2 3 Latifi, M (1984). "Variation in yield and lethality of venoms from Iranian snakes". Toxicon. 22 (3): 373–380. Bibcode:1984Txcn...22..373L. doi:10.1016/0041-0101(84)90081-3. PMID   6474490.
  30. Lysz, Thomas W.; Rosenberg, Philip (May 1974). "Convulsant activity of Naja naja oxiana venom and its phospholipase A component". Toxicon. 12 (3): 253–265. doi:10.1016/0041-0101(74)90067-1. PMID   4458108.
  31. Gopalakrishnakone, P; Chou, LM (1990). Snakebite: a medical and public health problem in Pakistan (Snakes of Medical Importance: Asia-Pacific Region ed.). Singapore: National University Singapore. pp. 447–461. ISBN   9971622173.
  32. Wüster, W; Thorpe, RS (March 1992). "Asiatic Cobras: Population Systematics of the Naja naja Species Complex (Serpentes: Elapidae) in India and Central Asia". Herpetologica. 48 (1): 69–85. JSTOR   3892921 . Retrieved 9 May 2021.
  33. 1 2 Yousefi, M; Kafash, A; Khani, A; Nabati, N (22 October 2020). "Applying species distribution models in public health research by predicting snakebite risk using venomous snakes' habitat suitability as an indicating factor". Sci Rep. 10 (18073): 18073. Bibcode:2020NatSR..1018073Y. doi:10.1038/s41598-020-74682-w. PMC   7582189 . PMID   33093515.
  34. 1 2 Gopalakrishnakone, P.; Chou, L.M., eds. (1990). Snakes of Medical Importance (Asia-Pacific Region). Singapore: National University of Singapore. ISBN   978-9971-62-217-6.[ page needed ]
  35. Latifi, Mahmoud (1991). Snakes of Iran. Oxford, Ohio: Society for the Study of Amphibians and Reptiles. ISBN   978-0-916984-22-9. (Naja naja oxiana, Ladle Snake, p. 124).
  36. Kasturiratne, A; Wickremasinghe, AR; de Silva, N; Gunawardena, NK; Pathmeswaran, A (November 2008). "The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths". PLOS Medicine. 5 (11): e218. doi: 10.1371/journal.pmed.0050218 . PMC   2577696 . PMID   18986210.

Further reading