Cladophora

Last updated

Cladophora
Cladophora.JPG
Cladophora
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Ulvophyceae
Order: Cladophorales
Family: Cladophoraceae
Genus: Cladophora
Kütz., 1843
Kingdom: Plantae
Cladophora glomerata, showing branching filaments and cellular structures Cladophora glomerata (L.) Kutz. (AM AK310111-1).jpg
Cladophora glomerata, showing branching filaments and cellular structures

Cladophora is a genus of reticulated filamentous Ulvophyceae (green algae).

Contents

Taxonomy

Cladophora fascicularis is a green macroalgae alga classified within the Chlorophyta division. Cladophora has over 183 species within its genus that are very hard to tell apart and classify, mainly because of the great variation in their appearances, which is affected by habitat, age and environmental conditions. [1]

Description and Appearance

Cladophora coloring is bright green which reflects the chlorophyll a, and chlorophyll b, which are similar to higher plant ratios and that also contains β-carotene and xanthophylls. [2]

The Thallus branches are smaller than the main axis, dichotomous, rough in texture, and have narrow tips. The cells within cladophora have multiple pyrenoids, are large and multiple nucleated and have many parietal round chloroplasts, which usually join into a net-like reticular formation.

Temperature, water currents and waves affect their metabolism and morphology, and branching patterns. At 15–20 °C branches appear alternate, they can also appear completely absent in temperatures below 25 °C. [3]

Defense

Thick walls called akinetes are made out of vegetative cells in times of short photoperiods, low temperatures or nutrient unavailability. [4]

The cell walls of Cladophora species often contain cellulose and pectin, providing strength and flexibility. [5] Thick walls and sheaths are mucilaginous.

Due to their unique cell wall structure and metal-binding they can absorb toxic metal ions from water for purification, particularly in the context of nutrient and heavy metal absorption, attracting attention to Cladophora's potential in phytoremediation.

Phytoremediation

Some Cladophora species, including Cladophora fascicularis, have been investigated for their use in phytoremediation. Cladophora fascicularis may contribute to improving water quality in contaminated aquatic ecosystems. This algae is additionally, biologically active. Cladophora possesses unprecedented capacities to filter toxins from water such as heavy metals and pollutants and efficiently absorb nutrients, including nitrogen and phosphorus. [6]

The Cladophora species can be a major nuisance, however, causing major alterations to benthic conditions linked particularly with increased phosphorus loading. [7]

Seasonal Blooms

Cladophora is known for its blooming activities which are seasonal, (early spring to summer) and indicate their eutrophic abilities as well as that pollution may be present in the environment that they are growing within. [8]

Dense Mats

Cladophora form a branched filamentous chlorophyte structure with large cylindrical cells forming long, regularly branched growths. The filaments can be quite long and may form dense mats or tufts in aquatic environments. When Cladophora becomes detached from the rocky substrate that it grows upon, it can then build up on shorelines, making their reticular formations, (dense mats) visible to onlookers. When dense mats form, this can affect light penetration and oxygen levels in aquatic ecosystems. Mats may also serve as habitat and food for various aquatic organisms. [9]

Growth and Habitat

Cladophora, exist in multiple ecosystems which include both tropical and moderate climates, freshwater, wastewater, and marine water ecosystems, and in multiple biomes, which include lakes, ponds, dam reservoirs, large rivers and the coastal littoral zones as well as in areas of oceanic depth (which determines temperatures and light availability as well as oxygen availability, which can become a limiting factor). This taxon needs nitrates, and orthophosphates, as well as hard water conditions with pH levels between 7–10, high light intensity and nutrient densities that are rich in nature. Cladophora may attach to submerged surfaces like rocks or other aquatic substrates, enabling it to grow more rapidly through optimization of space availability, (another limiting factors and source of infraspecific, intraspecies and interspecies competition).

Global Distribution

In Europe, only 15 known subtypes of cladophora are freshwater. Cladophora exists in Africa, Asia, the Pacific Islands, Australia, Europe, the Atlantic Islands, North America, New Zealand, as well as the Caribbean. In some Asian countries, almost 5% of human diets are algae, and its consumption is popular in France, Thailand, as well as the Hawaiian Islands. [10]

Life Cycle and Sexual Reproduction

Life Cycle and Asexual Reproduction: This plant is annual and can reproduce through both sexual and asexual mechanisms. Some species have isogametic capacities but little is known about this and it seems to be a rare occurrence present in few species. The few cases that have occurred were in apical and sub apical un-specialized cells. Cladophora generally reproduces asexually using 2 flagellated zoospores using mitotic division and distal cells of side branches.

Sexual reproduction: This occurs when the male and female gametes fuse, usually in water. The fusion of gametes results in the formation of a diploid zygote. The diploid zygote undergoes mitotic divisions to form a diploid sporophyte. The sporophyte phase is often short-lived and less conspicuous. It produces haploid spores through meiosis. Haploid spores are released from the sporophyte and can be dispersed by water currents or other means. Haploid spores germinate to form new haploid gametophytes, completing the life cycle. Reproductive cells, often referred to as zoospores, are typically motile and possess flagella, allowing them to move in water.

Unlike Spirogyra the filaments of Cladophora branch and do not undergo conjugation.

There are two multicellular stages in its life cycle – a haploid gametophyte and a diploid sporophyte – which look highly similar. The only way to tell the two stages apart is to either count their chromosomes, or examine their offspring. The haploid gametophyte produces haploid gametes by mitosis and the diploid sporophyte produces haploid spores by meiosis. The only visible difference between the gametes and spores of Cladophora is that the gametes have two flagella and the spores have four.

Uses

Cladophora can be eaten as a food item, can be either dried or fresh, (however it loses some of its nutritional value with increased processing and with genetic modification) used medicinally, it is considered a carbohydrate when consumed, it has pharmacological implications, it can be used for cosmetic application, used as a fertilizer, as an additive in feeds and it can be used as a biofuel in its raw form. [11]

Biofuel: Trans-esterification of Cladophora can be used to transform it into biodiesel. Alcohols and enzymes and Cladophora oils, are used to form this reaction, but production is often highly dependent on oil content. [12]

Pharmacology and Health Benefits: Cladophora has pharmacological uses as medication. Cladophora has antimicrobial, antihistamine, antiviral, antioxidant, anti-sclerosis, anti-inflammatory and weight loss properties as well as secondary metabolites and bioactive components that have uses in diabetes, hypertension, cancer, and serves as a protection from parasites. However, as of December 2023, Cladophora has yet to be utilized commercially as a pharmacological agent. [13]

Commercial Use: There is an additional demand for cladophora for biomass productivity with utilization commercially as material for value added products. [14]

Cladophora balls

Cladophora balls are formed from the filaments of the Algae [15] which are photosynthetic. Large numbers of these balls were thrown ashore in Devon, England. They had an average diameter of 2.5 cm and several million balls were found forming a layer. [16]

This is not to be confused with marimo, which, though formerly part of Cladophora, is now called Aegagropila linnaei.[ citation needed ]

Laotian Mekong weed

Khay phen served as an appetizer dish. Khay phen appetizer.jpg
Kháy phen served as an appetizer dish.

In Laos, Cladophora spp. (ໄຄ [kʰáj] "river weed" or more precisely ໄຄຫີນ [kʰájhǐːn] "rock river weed") are commonly eaten as a delicacy and usually known in English under the name "Mekong weed". The algae grow on underwater rocks and thrive in clear spots of water in the Mekong river basin. They are harvested 1 to 5 months a year and most often eaten in dry sheets (ໄຄແຜ່ນ [kʰájpʰɛ̄ːn] kaipen -kháy sheets-), similar to Crispy Chinese Seaweed or Japanese nori, though much cruder in their format. Luang Prabang's speciality is dry khai with sesame (kaipen), while Vang Vieng is famous for its roasted kháy sheets. They can be eaten in strips as an appetizer, with a meal or as a snack with Beer Lao. Luang Prabang kháy sheets kaipen are the most readily available form of Mekong weed and are famous throughout the country and in the neighbouring Isaan, though difficult to find beyond Vientiane. Mekong weed can also be eaten raw, in soups, or cooked in steamed curries (Lao : ຫມົກໄຄ, [mókkʰáj] ).[ citation needed ]

Cladophora as an asset and a nuisance

The genus Cladophora is cosmopolitan and accordingly infestations cannot often be regarded logically as being invasive. Where they occur they may at various times be seen as beneficial, as a nuisance, or an outright pest.[ citation needed ]

Modest growth of Cladophora is generally harmless; the growth is an important food for many fish and other aquatic animals, as a buffer for the sequestration of nutrients in the water body and for protection of some aquatic organisms from solar ultraviolet radiation.[ citation needed ]

Where Cladophora becomes a pest is generally where special circumstances cause such drastic overgrowth that algal blooms develop and form floating mats. Typical examples include where hypertrophication or high mortality of rival organisms produce high concentrations of dissolved phosphorus. Extensive floating mats prevent circulation that is necessary for the aeration of deeper water and, by blocking the light, they kill photosynthesising organisms growing beneath. The mats interfere with the fishing industry by clogging nets and preventing the use of lines. Where they wash ashore the masses of rotting material reduce shoreline property values along water bodies such as the Great Lakes in the United States. [17]

Quagga mussel populations have increased tremendously during the same time frame as the blooming of Cladophora, though their ecological relationships are not yet clear and may be complex. [18]

Diversity

Species include:

Aegagropila linnaei (marimo) was formerly placed here as Cladophora aegagropila

Related Research Articles

<i>Chondrus crispus</i> Species of edible alga

Chondrus crispus—commonly called Irish moss or carrageenan moss —is a species of red algae which grows abundantly along the rocky parts of the Atlantic coasts of Europe and North America. In its fresh condition this protist is soft and cartilaginous, varying in color from a greenish-yellow, through red, to a dark purple or purplish-brown. The principal constituent is a mucilaginous body, made of the polysaccharide carrageenan, which constitutes 55% of its dry weight. The organism also consists of nearly 10% dry weight protein and about 15% dry weight mineral matter, and is rich in iodine and sulfur. When softened in water it has a sea-like odour. Because of the abundant cell wall polysaccharides, it will form a jelly when boiled, containing from 20 to 100 times its weight of water.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Brown algae</span> Large group of multicellular algae, comprising the class Phaeophyceae

Brown algae, comprising the class Phaeophyceae, are a large group of multicellular algae, including many seaweeds located in colder waters within the Northern Hemisphere. Brown algae are the major seaweeds of the temperate and polar regions. They are dominant on rocky shores throughout cooler areas of the world. Most brown algae live in marine environments, where they play an important role both as food and as a potential habitat. For instance, Macrocystis, a kelp of the order Laminariales, may reach 60 m (200 ft) in length and forms prominent underwater kelp forests. Kelp forests like these contain a high level of biodiversity. Another example is Sargassum, which creates unique floating mats of seaweed in the tropical waters of the Sargasso Sea that serve as the habitats for many species. Many brown algae, such as members of the order Fucales, commonly grow along rocky seashores. Some members of the class, such as kelps, are used by humans as food.

<span class="mw-page-title-main">Bryophyte</span> Terrestrial plants that lack vascular tissue

Bryophytes are a group of land plants, sometimes treated as a taxonomic division, that contains three groups of non-vascular land plants (embryophytes): the liverworts, hornworts and mosses. In the strict sense, Bryophyta consists of the mosses only. Bryophytes are characteristically limited in size and prefer moist habitats although they can survive in drier environments. The bryophytes consist of about 20,000 plant species. Bryophytes produce enclosed reproductive structures, but they do not produce flowers or seeds. They reproduce sexually by spores and asexually by fragmentation or the production of gemmae. Though bryophytes were considered a paraphyletic group in recent years, almost all of the most recent phylogenetic evidence supports the monophyly of this group, as originally classified by Wilhelm Schimper in 1879. The term bryophyte comes from Ancient Greek βρύον (brúon) 'tree moss, liverwort', and φυτόν (phutón) 'plant'.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of autotrophic eukaryotes in the clade Archaeplastida

The green algae are a group consisting of the Prasinodermophyta and its unnamed sister which contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as a sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae. Many species live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<i>Caulerpa</i> Genus of seaweeds

Caulerpa is a genus of seaweeds in the family Caulerpaceae. They are unusual because they consist of only one cell with many nuclei, making them among the biggest single cells in the world.

<i>Ascophyllum</i> Species of seaweed

Ascophyllum nodosum is a large, common cold water seaweed or brown alga (Phaeophyceae) in the family Fucaceae. A. nodosum is also known in localities as feamainn bhuí, rockweed, Norwegian kelp, knotted kelp, knotted wrack or egg wrack. It is a seaweed that dominates the intertidal zone and grows only in the northern Atlantic Ocean, along the north-western coast of Europe including east Greenland and the north-eastern coast of North America, its range further south of these latitudes being limited by warmer ocean waters. Ascophyllum nodosum has been used numerous times in scientific research and has even been found to benefit humans through consumption.

<i>Laminaria</i> Genus of algae

Laminaria is a genus of brown seaweed in the order Laminariales (kelp), comprising 31 species native to the north Atlantic and northern Pacific Oceans. This economically important genus is characterized by long, leathery laminae and relatively large size. Some species are called Devil's apron, due to their shape, or sea colander, due to the perforations present on the lamina. Others are referred to as tangle. Laminaria form a habitat for many fish and invertebrates.

<i>Halimeda</i> Genus of algae

Halimeda is a genus of green macroalgae. The algal body (thallus) is composed of calcified green segments. Calcium carbonate is deposited in its tissues, making it inedible to most herbivores. However one species, Halimeda tuna, was described as pleasant to eat with oil, vinegar, and salt.

<i>Codium</i> Genus of algae

Codium is a genus of edible green macroalgae under the order Bryopsidales. The genus name is derived from a Greek word that pertains to the soft texture of its thallus. One of the foremost experts on Codium taxonomy was Paul Claude Silva at the University of California, Berkeley. P.C. Silva was able to describe 36 species for the genus and in honor of his work on Codium, the species C. silvae was named after the late professor.

<i>Avrainvillea</i> Genus of algae

Avrainvillea is a genus of green algae in the family Dichotomosiphonaceae.

<i>Bryopsis</i> Genus of algae

Bryopsis is a genus of marine green algae in the family Bryopsidaceae. It is frequently a pest in aquariums, where it is commonly referred to as hair algae.

<i>Turbinaria</i> (alga) Genus of seaweeds

Turbinaria is a genus of brown algae (Phaeophyceae) found primarily in tropical marine waters. It generally grows on rocky substrates. In tropical Turbinaria species that are often preferentially consumed by herbivorous fishes and echinoids, there is a relatively low level of phenolics and tannins.

<i>Kappaphycus</i> Genus of algae

Kappaphycus is a genus of red algae. Species are distributed in the waters of East Africa, Indonesia, Malaysia, Hainan Island, the Philippines, and Micronesia.

<i>Euglena sanguinea</i> Species of single cell flagellate eukaryotes

Euglena sanguinea is a species of the genus Euglena. The red colour is due to the presence of astaxanthin and the cells can be populous enough to colour water red. The pigment is used to protect the chloroplasts from light that is too intense, but as the light levels change the cells can take on a green colour as the red pigment is moved to the centre of the cells. Euglena sanguinea is known to make the potent icthyotoxin euglenophycin. Icthyotoxin euglenophycin is a toxin that is very similar in structure to solensopsin, a alkaloid that is found in fire ant venom. This is the only known species of euglenids that is able to form toxic blooms that cause tangible losses to fish farms.

<i>Hypnea</i> Genus of algae

Hypnea is a genus of red algae, and a well known carrageenophyte.

<i>Dictyota</i> Genus of seaweed in the family Dictyotaceae

Dictyota is a genus of brown seaweed in the family Dictyotaceae. Species are predominantly found in tropical and subtropical seas, and are known to contain numerous chemicals (diterpenes) which have potential medicinal value. As at the end of 2017, some 237 different diterpenes had been identified from across the genus.

Cryptoglena(/ˌkɹɪptoʊˈgliːnə/) is a genus of photosynthetic euglenids that was first described in 1831 by Christian Gottfried Ehrenberg. Today, its circumscription is controversial: Bicudo and Menezes consider twenty-one species as Cryptoglena, of which, nine are uncertain. Cryptoglena species are water-based, living in both freshwater and marine environments. They are biflagellated, with one internal flagellum and one external flagellum, which allows movement through environments as demonstrated by Kim and Shin in the species C. pigra. The cells of Cryptoglena resemble a coffee bean, as they have a groove that runs the length of the cell on one side and makes them U-shaped in cross section. They are ovoid in shape and are small, with the larger cells being on average 25 x 15 μm. After being first described in 1831, little work was done on the genus until the late 1970s and early 1980s, after the scanning electron microscope completed development and was implemented into laboratories. Work then proceeded with the developments of molecular biology, which allows for classifications based on DNA sequences. For Cryptoglena the main DNA used for classification are small subunit (SSU) and large subunit (LSU) rDNA.

References

  1. Gestinari, L., et al. (2010). Distribution of Cladophora species (Cladophorales, Chlorophyta) along the Brazilian Coast. Phytotaxa 14 22.
  2. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  3. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  4. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  5. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  6. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  7. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  8. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  9. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  10. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  11. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  12. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  13. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  14. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  15. Burrows, E.M.1991. Seaweeds of the British Isles Volume 2 Chlorophyta. Natural History Museum, London. ISBN   0-565-00981-8
  16. Bryant, J. and Irvine, Linda. 2016. Marimo, Cladophora, Posidonia and Other Plant Balls. The Linnean.32 (2) pp.11–14
  17. "Great Lakes Science Center|".
  18. "The beach speaks for itself". June 29, 2008. Archived from the original on 3 March 2016.

[1]

Cladophora Index. Monterey Bay Aquarium

[2]

[3] [4]

  1. Guiry, M.D. & Guiry, G.M. (2023). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway (taxonomic information republished from AlgaeBase with permission of M.D. Guiry). Cladophora fascicularis (Mertens ex C.Agardh) Kützing, 1843. Accessed through: World Register of Marine Species at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=239135 on 2023-11-07
  2. Michalak, I., Messyasz, B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33, 133–166 (2021). https://doi.org/10.1007/s10811-020-02211-3
  3. Cladophora and Water Quality of Lake Michigan: A Systematic Survey of Wisconsin Nearshore Areas (2004) [PDF]
  4. Western Lake Michigan Nearshore Survey of Water Chemistry and Cladophora Distribution, 2004–2007 [PDF]