El Pedregal Formation

Last updated
El Pedregal Formation
Stratigraphic range: Early Aalenian-Early Bajocian 174–170  Ma
O
S
D
C
P
T
J
K
Pg
N
El Pedregal Formation.jpg
Onlap stratal terminations of the El Pedregal Formation against the flank of a volcanic mound in Camarena de la Sierra
Type Geological formation
Underlies
Overlies
Area Levantine sector
Thickness>150 m
Lithology
PrimaryMudstone limestones and wakestone limestones
Location
LocationLevantine sector
Coordinates 40°10′27.1”N 1°00′50.7”W
Region Iberian Basin
Country Spain
Type section
Thickness at type section~150 m (490 ft)
Reliefkarte Spanien mit Kanaren.png
Blue pog.svg
El Pedregal Formation (Spain)

The El Pedregal Formation is a geological formation of Early Aalenian-Early Bajocian (Middle Jurassic) age in the Iberian Basin of W Iberian Peninsula. [1] [2] [3] This is allocated in the East-Iberian area, that during the Middle Jurassic was part of a Carbonate platform system, influenced by tectonic activity and fault lines, along the Iberian and Catalan Coastal mountain ranges of Spain, with an exposure of up to 500 km. [1] [4] This carbonates are allocated on the Chelva Group, that was network of carbonate platforms, with shallow areas forming around elevated blocks created by tectonic forces. [5] [6] Deeper marine environments developed between these blocks, which were likely connected to the open ocean. The Internal Castilian Platform was linked to the Iberian Massif, while the El Maestrazgo High separated two marine platforms: the External Castilian and Aragonese. [1] [5] Further to the northeast, the Tortosa Platform was bordered by the Tarragona High and Catalan Massif to the north and the El Maestrazgo High to the south. The Beceite Strait acted as a transition zone between the Aragonese and Tortosa platforms. [1] [7]

Contents

Paleoenvironment

Paleogeography of the area in the Middle Jurassic Early to Middle Jurassic Iberia.jpg
Paleogeography of the area in the Middle Jurassic

The El Pedregal Formation lithology is dominated by mudstone and wackestone limestones with fine sediments, including microfilaments, echinoderm fragments, and pellets, with less important sequences with interbedded marls, which are indicative of a low-energy marine environment. [8] [9] Associated with a shallow carbonate sea, sequences of this formation developed on a confined lagoon, relatively shallow and protected from direct oceanic influence by a volcanoclastic barrier. [9]

This lagoon was developed adjacent to or inside an ephemeral volcanic island, shielded from ocean waves by deposits of volcanic materials. [10] Within these calm lagoon settings, carbonate sediments mixed with fine particles that contained plant fossils, preserving evidence of plant-insect interactions, with a low diversity of plants, mainly cycadophytes and ferns. [2] [11] Occasionally, storm events would disrupt nearby oyster banks, carrying marine debris, including oysters, into the lagoons, sometimes interspersed with plant remains. [10]

This ephemeral island/islands were situated more than 150 km from the nearest mainland, the Catalan and Iberian Massifs. Following the lagoonal deposits, considered of early Aalenian age, a large regional transgression in the late Aalenian impacted the local platform, connecting the Proto-Atlantic Ocean with the Western Tethys Ocean. Latter in the Bajocian the area evolved into a shallow external marine platform with frequent emersions. [10]

Pelagic/open marine sequences are also common within the formation, including the "Albarracinites beds". [12] At The Masada Toyuela site taphonomic patterns indicate two contrasting sedimentary environments, with taphonomic populations dominating in shallow-water settings, marked by reworked and abraded ammonite molds and chambers under slow sediment accumulation punctuated by rapid episodes due to currents and sediment bypassing. [12] Conversely, deeper, sediment-starved areas feature "type 1" taphonomic populations, characterized by juvenile, undamaged ammonites within homogeneous molds, typical of condensed deposits from transgressive phases. [12]

Fossil Content

Color key
Taxon Reclassified taxonTaxon falsely reported as presentDubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.

Brachiopoda

GenusSpeciesLocationMaterialNotesImages
Pseudogibbirhynchia [3]
  • P. mutans
  • Abejuela outcrop
Isolated shellsAn Brachiopod of the family Basiliolidae
Prionorhynchia [3]
  • P. rubrisaxensis
  • Abejuela outcrop
Isolated shellsAn Brachiopod of the family Prionorhynchiidae

Mollusca

GenusSpeciesLocationMaterialNotesImages
Abbasites [7]
  • A. spp.
  • Caudiel outcrop
  • Pina-Barracas.1
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
Isolated shellsAn Ammonite of the family Erycitidae
Abassitoides [7]
  • A. spp.
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
Isolated shellsAn Ammonite of the family Erycitidae
Albarracinites [12]
  • A. albarraciniensis
  • Masada Toyuela
  • Cea de Abarracín
  • Moscardon
  • Vibei
Isolated shellsAn Ammonite of the family Stephanoceratidae
Ambersites [7]
  • A. spp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Hammatoceratoidea
Apedogyria [7]
  • A. spp.
  • Pina-Barracas.2
  • Sarrión.3
Isolated shellsAn Ammonite of the family Graphoceratidae
Brasilia [7]
  • B. spp.
  • Caudiel outcrop
  • Pina-Barracas.1
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
  • Sarrión.3
Isolated shellsAn Ammonite of the family Graphoceratidae
Chondroceras [7]
  • C. spp.
  • Pina-Barracas.1
Isolated shellsAn Ammonite of the family Sphaeroceratidae
Elatmites [7]
  • E. spp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Perisphinctidae
Eudmetoceras [7]
  • E. spp.
  • Caudiel outcrop
  • Pina-Barracas.1
Isolated shellsAn Ammonite of the family Hammatoceratoidea
Euhoploceras [7]
  • E. spp.
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
Isolated shellsAn Ammonite of the family Sonniniidae
Epalxites [7]
  • E. spp.
  • Pina-Barracas.1
Isolated shellsAn Ammonite of the family Sphaeroceratidae
Fontannesia [7]
  • F. ssp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Sonniniidae
Graphoceras [7]
  • G. spp.
  • Caudiel outcrop
  • Pina-Barracas.1
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
Isolated shellsAn Ammonite of the family Graphoceratidae
Specimen Graphoceras sp.jpg
Specimen
Haplopleuroceras [7]
  • H. mundum
  • H. subspinatum
  • H. crassum
  • H. spp.
  • Caudiel outcrop
  • Pina-Barracas.1
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
Isolated shellsAn Ammonite of the family Hammatoceratoidea
Leptosphinctes [7]
  • L. spp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Perisphinctidae
Specimen Leptosphinctes microconch Jurassic Dorset.jpg
Specimen
Ludwigella [7]
  • L. spp.
  • Caudiel outcrop
  • Pina-Barracas.1
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
Isolated shellsA Bivalve of the family Graphoceratidae
Macrocephalites [7]
  • M. spp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Macrocephalitidae
Specimen Macrocephalites.jpg
Specimen
Oppelia [7]
  • O. spp.
  • Pina-Barracas.1
Isolated shellsAn Ammonite of the family Oppeliidae
Specimen Oppelia con aptico.JPG
Specimen
Rhodaniceras [7]
  • O. spp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Hammatoceratoidea
Pleydellia [7]
  • P. aalensis
  • P. mactra
  • P. fluens
  • P. subcomp
  • P. ssp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Hildoceratidae
Sonninia [7]
  • S. spp.
  • Sarrión.1
  • Sarrión.2
  • Sarrión.3
Isolated shellsAn Ammonite of the family Sonniniidae
Spiroceras [7]
  • S. spp.
  • Caudiel outcrop
Isolated shellsAn Ammonite of the family Spiroceratidae
Specimen Spiroceras sp giur fra.JPG
Specimen
Stemmatoceras [7]
  • S. spp.
  • Pina-Barracas.1
Isolated shellsAn Ammonite of the family Stephanoceratidae
Stephanoceras [7]
  • S. spp.
  • Pina-Barracas.1
Isolated shellsAn Ammonite of the family Stephanoceratidae
Specimen Stephanoceras.jpg
Specimen
Toxamblyites [7]
  • T. spp.
  • Pina-Barracas.1
Isolated shellsAn Ammonite of the family Haploceratidae
Westermannites [7]
  • W. ssp.
  • Pina-Barracas.2
  • Sarrión.1
  • Sarrión.2
Isolated shellsAn Ammonite of the family Sphaeroceratidae

Annelida

GenusSpeciesStratigraphic positionMaterialNotesImages
Schistomeringos [11]
  • S. expectatus
  • S. spp.
  • TE-620 road
Isolated scolecodontsA polychaete of the family Dorvilleidae. Unlike the modern counterparts that live in deeper environments, this species is found linked with shallow marine facies
Extant specimen of the same genus Schistomeringos rudolphii (YPM IZ 100176).jpeg
Extant specimen of the same genus

Insecta

Brachys ovatus (48545482827).jpg
Odonata 001 contrast adjusted.jpg
Tineidae (39992135602).jpg
Aulacaspis yasumatsui DSC03402.jpg
Feeding traces suggest the presence of Coleoptera, Odonata, Lepidoptera and Hemiptera.

Foliar remains with insect interactions are common, including traces of margin feeding, Hole feeding, mining, oviposition, piercing and sucking and surface feeding. [2] Due to be located adjacent to an isolated island, the Camarena locality insect biota likely wasn't too specialized, with generalists more likely to adapt to these environments and inflict similar damage. [2]

Modern equivalents capable of leave similar patterns in extant cycadophytes include caterpillars from genera like Eumaeus (Lycaenidae) and Chilades , along other lepidopteran families, such as Tineidae, Nymphalidae, and Erebidae. [2] Other insects capable of attack cycads include Hemipterans like Aulacaspis yasumatsui or the beetle Brachys cleidecostae (Buprestidae). [2]

Bryophyta

GenusSpeciesStratigraphic positionMaterialNotesImages
Foveosporites [11]
  • F. visscheri
  • TE-620 road
MiosporesIncertae sedis; affinities with Bryophyta.
Interulobites [11]
  • I. spp
  • TE-620 road
MiosporesIncertae sedis; affinities with Bryophyta.
Polycingulatisporites [11]
  • P. circulus
  • TE-620 road
MiosporesIncertae sedis; affinities with Bryophyta.

Lycophyta

GenusSpeciesStratigraphic positionMaterialNotesImages
Leptolepidites [11]
  • L. macroverrucous
  • L. sp
  • TE-620 road
MiosporesAffinities with the family Lycopodiaceae in the Lycopodiopsida.
Lycopodiacidites [11]
  • L. rugulatus
  • TE-620 road
MiosporesAffinities with the family Lycopodiaceae in the Lycopodiopsida.
Extant Lycopodium specimens Lycopodium annotinum 161102.jpg
Extant Lycopodium specimens
Staplinisporites [11]
  • S. caminus
  • TE-620 road
MiosporesAffinities with the family Lycopodiaceae in the Lycopodiopsida.
Uvaesporites [11]
  • U. argenteaeformis
  • TE-620 road
MiosporesAffinities with the Selaginellaceae in the Lycopsida.

Pteridophyta

GenusSpeciesStratigraphic positionMaterialNotesImages
Biretisporites [11]
  • B. potoniaei
  • TE-620 road
MiosporesAffinities with the families Schizaeaceae/Anemiaceae inside Pteridophyta
Extant Anemia specimens Anemia phyllitidis kz05.jpg
Extant Anemia specimens
Baculatisporites [11]
  • B. comaumensis
  • TE-620 road
MiosporesAffinities with the family Osmundaceae in the Polypodiopsida.
Extant Osmunda specimens Cinnamon Fern (Osmundastrum cinnamomeum) - Cape St. Mary's Ecological Reserve, Newfoundland 2019-08-10.jpg
Extant Osmunda specimens
Cibotiumspora [11]
  • C. jurienensis
  • C. juncta
  • TE-620 road
MiosporesAffinities with the family Cyatheaceae and Dicksoniaceae in the Cyatheales. Arboreal fern spores.
Contignisporites [11]
  • C. sp.
  • TE-620 road
MiosporesAffinities with the families Schizaeaceae/Anemiaceae inside Pteridophyta
Deltoidospora [11]
  • D. toralis
  • D. spp.
  • TE-620 road
MiosporesAffinities with the family Cyatheaceae and Dicksoniaceae in the Cyatheales. Arboreal fern spores.
Dictyophyllidites [11]
  • D. sp.
  • TE-620 road
MiosporesAffinities with Matoniaceae/Weichseliaceae in the Gleicheniales.
Echinasporis [11]
  • E. sp.
  • TE-620 road
MiosporesIncertae sedis; affinities with the Pteridophyta
Gleicheniidites [11]
  • G. senonicus
  • TE-620 road
MiosporesAffinities with the Gleicheniales in the Polypodiopsida. Fern spores from low herbaceous flora.
Extant Gleichenia Chemancheri 20181117 122614.jpg
Extant Gleichenia
Granulatisporites [11]
  • G. sp.
  • TE-620 road
MiosporesIncertae sedis; affinities with the Pteridophyta
Ischyosporites [11]
  • I. crateris
  • I. marburgensis
  • TE-620 road
MiosporesAffinities with the families Schizaeaceae/Anemiaceae inside Pteridophyta
Kekryphalospora [11]
  • K. sp. cf. K. distincta
  • TE-620 road
MiosporesAffinities with the families Schizaeaceae/Anemiaceae inside Pteridophyta
Klukisporites [11]
  • K. variegatus
  • K. spp.
  • TE-620 road
MiosporesAffinities with the family Lygodiaceae in the Polypodiopsida. K.variegatus is the 2nd most abundant palynomorph (20%)
Extant Lygodium Small-leaved-Climbing-Fern (2928313776).gif
Extant Lygodium
Leptolepidites [11]
  • L. macroverrucosus
  • L. sp.
  • TE-620 road
MiosporesAffinities with the family Dennstaedtiaceae in the Polypodiales. Forest fern spores.
Extant Dennstaedtia specimens Fern Path (9540302241).jpg
Extant Dennstaedtia specimens
Lycopodiacidites [11]
  • L. rugulatus
  • TE-620 road
MiosporesAffinities with the Ophioglossaceae in the Filicales. Fern spores from lower herbaceous flora.
Extant Helminthostachys specimens Helminthostachys zeylanica 11.JPG
Extant Helminthostachys specimens
Manumia [11]
  • M. irregularis
  • TE-620 road
MiosporesIncertae sedis; affinities with the Pteridophyta
Matonisporites [11]
  • M. phlebopteroides
  • TE-620 road
MiosporesAffinities with Matoniaceae in the Gleicheniales.
Osmundacidites [11]
  • O. wellmani
  • TE-620 road
MiosporesAffinities with the family Osmundaceae in the Polypodiopsida.
Skarbysporites [11]
  • S. crassexinius
  • TE-620 road
MiosporesIncertae sedis; affinities with the Pteridophyta
Todisporites [11]
  • T. major
  • TE-620 road
MiosporesAffinities with the family Osmundaceae in the Polypodiopsida.

Cycadophytes

GenusSpeciesStratigraphic positionMaterialNotesImages
Cycadopites [11]
  • C. cf. carpentier
  • C. follicularis
  • TE-620 road
PollenAffinities with the family Cycadaceae in the Cycadales and with Bennettitales.
Extant Cycas platyphylla Cycas platyphylla Male cone 3.jpg
Extant Cycas platyphylla
Cycadophyta [2] [10] Indeterminate
  • TE-620 road
Multiple LeafletsAffinities with Cycadales in the Cycadopsida. The local macroflora is dominated by Cycadophytes
Monosulcites [11]
  • M. minimus
  • TE-620 road
PollenAffinities with Cycadales in the Cycadopsida.

Coniferophyta

GenusSpeciesStratigraphic positionMaterialNotesImages
Araucariacites [11]
  • A. australis
  • TE-620 road
PollenAffinities with Araucariaceae in the Pinales. The Camarena palynoflora is dominated by Araucariacites australis (58%)
Extant Araucaria. Araucaria bidwillii - pollen cones.jpg
Extant Araucaria .
Callialasporites [11]
  • C. turbatus
  • TE-620 road
PollenAffinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants.
Classopollis [11]
  • C. classoides
  • TE-620 road
PollenAffinities with the Hirmeriellaceae in the Pinopsida.
Sciadopityspollenites [11]
  • S. macroverrucosus
  • S. spp.
  • TE-620 road
PollenAffinities with both Sciadopityaceae and Miroviaceae in the Pinopsida. This pollen's resemblance to extant Sciadopitys suggest that Miroviaceae may be an extinct lineage of Sciadopityaceae-like plants. [13]
Extant Sciadopitys. Sciadopitys verticillata cones.jpg
Extant Sciadopitys .
Spheripollenites [11]
  • S. psilatus
  • TE-620 road
PollenAffinities with the Hirmeriellaceae in the Pinopsida.

See also

References

  1. 1 2 3 4 Gómez, J.J.; Fernández-López, S.R. (2006). "The Iberian Middle Jurassic carbonate-platform system: Synthesis of the palaeogeographic elements of its eastern margin (Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology. 236 (3–4): 190–205. Bibcode:2006PPP...236..190G. doi:10.1016/j.palaeo.2005.11.008. ISSN   0031-0182.
  2. 1 2 3 4 5 6 7 Santos, Artai A.; Sender, Luis M.; Wappler, Torsten; Engel, Michael S.; Diez, José B. (2021). "A Robinson Crusoe story in the fossil record: Plant-insect interactions from a Middle Jurassic ephemeral volcanic island (Eastern Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology. 583: 110655. Bibcode:2021PPP...58310655S. doi:10.1016/j.palaeo.2021.110655. hdl: 11093/2633 . ISSN   0031-0182.
  3. 1 2 3 Cortés, José Emilio (2023-06-12). "Dating volcanic materials through biochronostratigraphic methods applied to hosting strata (example from the Iberian Chain, eastern Spain)". Comptes Rendus. Géoscience. 355 (G1): 175–202. Bibcode:2023CRGeo.355..175C. doi: 10.5802/crgeos.220 . ISSN   1778-7025.
  4. Martínez González, R.M.; Lago, M.; Vaquer, R.; Valenzuela Ríos, J.I.; Arranz Yagüe, E. (1996). "Composición mineral del volcanismo Jurásico (pre-Bajociense Medio) en la Sierra de Javalambre (Cordillera Ibérica, Teruel): datos preliminares" (PDF). Geogaceta. 19: 41–44.
  5. 1 2 Gómez, J. J.; Goy, A. (1979). "Las unidades litoestratigraficas del Jurasico medio y superior, en facies carbonatadas del Sector Levantino de la Cordillera Iberica [España]". Estudios geológicos. 35: 1–683.
  6. García-Frank, Alejandra; Ureta, Soledad; Mas, Ramón (2008). "Aalenian pulses of tectonic activity in the Iberian Basin, Spain". Sedimentary Geology. 209 (1–4): 15–35. Bibcode:2008SedG..209...15G. doi:10.1016/j.sedgeo.2008.06.004. ISSN   0037-0738.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Cortés, J.E.; Gómez, J.J. (2016-12-22). "Middle Jurassic volcanism in a magmatic-rich passive margin linked to the Caudiel Fault Zone (Iberian Range, East of Spain): biostratigraphical dating". Journal of Iberian Geology. 42 (3). doi:10.5209/jige.54667. ISSN   1886-7995.
  8. Gómez, Juan J.; Goy, Antonio (2005). "Late Triassic and Early Jurassic palaeogeographic evolution and depositional cycles of the Western Tethys Iberian platform system (Eastern Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology. 222 (1–2): 77–94. Bibcode:2005PPP...222...77G. doi:10.1016/j.palaeo.2005.03.010. ISSN   0031-0182.
  9. 1 2 Cortés, J.E. (2019). "La Arquitectura Deposicional de los Carbonatos del Jurásico Inferior y Medio Relacionados con los Materiales Volcánicos del Sureste de la Cordillera Ibérica". PhD Dissertation. Ed. Electrónica Universidad Complutense de Madrid, Madrid: 1–1330.
  10. 1 2 3 4 Cortés, J. E.; Gómez, J. J. (2018-04-16). "The epiclastic barrier-island system of the Early‒Middle Jurassic in eastern Spain" . Journal of Iberian Geology. 44 (2): 257–271. Bibcode:2018JIbG...44..257C. doi:10.1007/s41513-018-0061-7. ISSN   1698-6180.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Santos, Artai A.; Rodríguez-Barreiro, Iván; McLoughlin, Stephen; Pons, Denise; Valenzuela-Ríos, Jose I.; Diez, José B. (2024). "Plant colonization of isolated palaeoecosystems: Palynology of a Middle Jurassic extinct volcanic island (Camarena, Teruel, eastern Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology. 639: 112081. Bibcode:2024PPP...63912081S. doi: 10.1016/j.palaeo.2024.112081 . hdl: 10550/109427 . ISSN   0031-0182.
  12. 1 2 3 4 Fernández-López, Sixto Rafael (2011-09-01). "Taphonomic analysis and sequence stratigraphy of the Albarracinites beds (lower Bajocian, Iberian range, Spain). An example of shallow condensed section". Bulletin de la Société Géologique de France. 182 (5): 405–415. doi:10.2113/gssgfbull.182.5.405. ISSN   1777-5817.
  13. Hofmann, Christa-Ch.; Odgerel, Nyamsambuu; Seyfullah, Leyla J. (2021). "The occurrence of pollen of Sciadopityaceae Luerss. through time". Fossil Imprint. 77 (2): 271–281. doi: 10.37520/fi.2021.019 . S2CID   245555379. Archived from the original on 27 December 2021. Retrieved 27 December 2021.