Rotzo Formation

Last updated
Rotzo Formation
Stratigraphic range: Early Pliensbachian
~192–187  Ma
O
S
D
C
P
T
J
K
Pg
N
[1]
Panorma di Rotzo.jpg
Panorama of the Rotzo area with several of the Outcrops visible: Tonezza mountain at the left, Val d´Assa cliff in the center-front and Campolongo mountain in the right
Type Geological formation
Unit of Calcari Grigi Group
Sub-unitsTovel Member [2]
Underlies Massone Oolitic Limestone
Overlies
Area Trento Platform
Thickness250 m
Lithology
PrimaryLithified gray silty marl, gray grainstone, bioturbated/intraclastic/ooidal gray wackestone, mud banks and sand deposits. [3]
OtherLight-grey to yellowish-grey packstone with oolites, bioclasts, algal lumps, pellets, dasycladacean algae, foraminifera, lituolids, and miliolids
Location
Location Vicenza Province: Trentino-Alto Adige, Southern Alps
Coordinates 45°42′N11°06′E / 45.7°N 11.1°E / 45.7; 11.1
Approximate paleocoordinates 32°06′S16°42′E / 32.1°S 16.7°E / -32.1; 16.7
Region Veneto
CountryFlag of Italy.svg  Italy
Type section
Named for Rotzo
Italy relief location map.jpg
Blue pog.svg
Rotzo Formation (Italy)

The Rotzo Formation (also known in older literature as the Noriglio Grey Limestone Formation) is a geological formation in Italy, dating to roughly between 192 and 186 million years ago and covering the Pliensbachian stage of the Jurassic Period in the Mesozoic Era. [4] Has been traditionally classified as a Sinemurian-Pliensbachian Formation, but a large and detailed dataset of isotopic 13C and 87Sr/86Sr data, estimated the Rotzo Formation to span only over the Early Pliensbachian, bracketed between the Jamesoni-Davoei biozones, marked in the Loppio Oolitic Limestone–Rotzo Fm contact by a carbon isotope excursion onset similar to the Sinemu-Pliens boundary event, while the other sequences fit with the a warm phase that lasts until the Davoei biozone. [1] The Rotzo Formation represented the Carbonate Platform, being located over the Trento Platform and surrounded by the Massone Oolite (marginal calcarenitic bodies), the Fanes Piccola Encrinite (condensed deposits and emerged lands), the Lombadian Basin Medolo Group and Belluno Basin Soverzene Formation (open marine), and finally towards the south, deep water deposits of the Adriatic Basin. [5] The Pliensbachian Podpeč Limestone of Slovenia, the Aganane Formation & the Calcaires du Bou Dahar of Morocco represent regional equivalents, both in deposition and faunal content.

Contents

Fossil prosauropod tracks have been reported from the formation. [6] This formation was deposited within a tropical lagoon environment, similar to modern Bahamas which was protected by oolitic shoals and bars from the open deep sea located to the east (Belluno Basin) and towards the west (Lombardia Basin). It is characterized by a rich paleontological content. It is notable mostly thanks to its great amount of big aberrant bivalves, among which is the genus Lithiotis , described in the second half of the nineteenth century. The unusual shape of Lithiotis and Cochlearites shells, extremely elongated and narrow, characterized by a spoon-like body space placed in a high position, rarely preserved, seems to suggest their adaptation to soft and muddy bottoms with a high sedimentation rate. [7] The Bellori outcrop displays about 20 m of limestones with intercalated clays and marls rich in organic matter and sometimes fossil wood (coal) and amber. The limestones are well stratified, with beds 10 cm to more than one metre thick, whereas the clayey levels range between 3 and 40 cm in thickness. [8] [9]

Paleoenvironment

The sedimentary cover of the Southern Alps has been recognized as a well-preserved section of the Mesozoic Tethys' southern continental margin, featuring a horst and graben structure linked to the rifting associated with the opening of the central North Atlantic that in the Late Triassic and Early Jurassic, created elevated blocks separated by troughs. While the western margin (Piedmont and Lombardy) quickly submerged in the Early Jurassic (As seen by the Saltrio Formation & Moltrasio Formation), the eastern regions maintained shallow water sedimentation, including the Friuli and Trento Platforms, this last one latter evolving into a pelagic plateau, and separated from the Lombardian basin by the Garda escarpment fault system. [10]

The Early Jurassic Calcari Grigi Group represents the shallow-water sedimentation phase of the Trento Platform, revealing several sites over an area of about 1,500 km2. The continuity of dinosaur tracks from the Hettangian-Pliensbachian interval indicates a stable connection between the Southern Alps' carbonate tidal flats and nearby vegetated lands and freshwater sources, although the exact locations of these lands remain uncertain. [11] Detailed sedimentological studies of the Calcari Grigi Group, particularly the Rotzo Formation, describe it as a shallow subtidal platform with an inner lagoon bordered by oolitic shoals. [8]

The Coste dell’Anglone ichnosite for example, situated on the margin of this lagoon within a sandy barrier complex, was influenced by pioneer plants like Hirmeriellaceae in semi-arid conditions. Sedimentary structures indicate a shallow water tidal environment with heterolithic stratification pointing to steady flows at low current velocities. The presence of dinosaur tracks and supratidal markers suggests repeated subaerial exposure, contrasting with previous interpretations of the site as fully subtidal. [11] [12]

These findings align with the lagoon-barrier island complex scenario, featuring a subtidal ramp gently inclined to the west and an intertidal-supratidal barrier island complex trending approximately N-S, now corresponding to the Mt. Brento-Biaina and Mt. Baldo chains. [5] [11]

Amoebae

The presence of the families Centropyxidae and Difflugiidae testifies the presence of a mixed marine-terrestrial depositional system, lacking large bodies of water. [13]

GenusSpeciesLocationMaterialNotesImages

Centropyxis [13]

  • C. sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Centropyxidae inside Arcellinida.

Extant Example of the Genus Centropyxis Collection Penard MHNG Specimen 691-1-3 Centropyxis aculeata.tif
Extant Example of the Genus Centropyxis

Difflugia [13]

  • D. sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Difflugiidae inside Arcellinida.

Extant Example of the Genus Difflugia Difflugia urceolata.jpg
Extant Example of the Genus Difflugia

Pontigulasia [13]

  • P. sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Difflugiidae inside Arcellinida.

Extant Example of the Genus Pontigulasia Collection Penard MHNG Specimen 574-1-2 Pontigulasia vas.tif
Extant Example of the Genus Pontigulasia

Foranimifera

GenusSpeciesLocationMaterialNotesImages
Agerina [14]
  • A. martana
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the Cornuspiridae family
Ammobaculites [14]
  • A. coprolithiformis
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the family Ammomarginulininae.
Amijiella [14]
  • A. amiji
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the Hauraniidae family
Bosniella [14]
  • B. oenensis
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the Biokovinidae family
Cymbriaella [15]
  • C. Iorigae
  • Monte di Campoluzzo
  • Alpe Alba
Calcareous SkeletonsA foraminifer of the Hauraniidae family
Duotaxis [14] [16]
  • D. metula
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the Verneuilinoidinae family

Everticyclammina [17]

  • E. praevirguliana
  • Camporosa
  • Rotzo
  • Monte Cimoncello di Toraro
  • Monte di Campoluzz
Calcareous SkeletonsA foraminifer of the Everticyclamminidae family.
Frondicularia [18]
  • F. sp.
  • Bellori
  • Garzon di Scotto
  • Ponte dell`Anguillara
Calcareous SkeletonsA foraminifer of the family Nodosariinae.
Glomospira [14]
  • G. sp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the family Ammodiscidae.
Haurania [14]
  • H. amiji
  • H. deserta
  • H. ssp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
  • Bellori
  • Garzon di Scotto
  • Ponte dell`Anguillara
Calcareous SkeletonsA foraminifer of the family Hauraniinae.
Lituosepta [14] [19]
  • L. recoarensis
  • L. compressa
  • L. ssp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
  • Bellori
  • Ponte dell`Anguillara
Calcareous SkeletonsA foraminifer of the Mesoendothyridae family.
Meandrovoluta [14] [20]
  • M. asiagoensis
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Monte Baldo
Calcareous SkeletonsA foraminifer of the Cornuspiridae family
Mayncina [18] [14]
  • M. termieri
  • Garzon di Scotto
  • Bellori
  • Ponte dell`Anguillara
Calcareous SkeletonsA foraminifer of the Mayncinidae family
Orbitopsella [18] [14]
  • O. primaeva
  • O. preacursor
  • O. dubari
  • O. spp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Campomolon
  • Bellori
  • Ponte dell`Anguillara
Calcareous SkeletonsA foraminifer of the Mesoendothyridae family.
Ophtalmidium [14]
  • O. concentricum
  • O. sp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the family Ophthalmidiidae.
Paleomayncina [14]
  • P. termieri
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the Planiseptinae family.
Pseudocyclammina [14]
  • P. liasica
  • P. spp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the Pfenderinidae family.
Pseudopfenderina [14]
  • P. cf. butterlini
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous SkeletonsA foraminifer of the Pseudopfenderininae family.

Invertebrates

Microfossils of the Rotzo Formation consist of benthic foraminifera, calcareous algae, Ostracoda and coprolites. Foraminifera are mainly benthic agglutinated species belonging to the superfamily Lituolacea (suborder Textulariina), while lamellar and porcellaneous-walled species are very rare. [21] The bivalve Opisoma excavatum is very common. [22]

Sponges

GenusSpeciesStratigraphic positionMaterialNotesImages

Chaetetes [23]

  • C. (Pseudoseptifer) waehneri
  • Lancia refuge
  • Alpe Alba
  • Col Santo

Colonial Imprints

A Chaetetidan Demosponge, member of Chaetetinae. Monospecific assamblages with encrusting and symbiont forms are found abundantly on lagoonal facies, distributed in several stratigraphic horizons.

Specimen of the same genus Chaetetes (8109235590).jpg
Specimen of the same genus

Anthozoa

GenusSpeciesStratigraphic positionMaterialNotesImages

Isastrea [24]

  • I. sp.
  • Rotzo

Colonial Imprints

A Scleractinian Coral, member of Montlivaltiidae. This Coral is often found in the Early Jurassic Tethys range, from the Iberian peninsula to Morocco.

Specimen of the same genus Fossil Isastrea sp from Middle Jurassic, Tabas, Iran.jpg
Specimen of the same genus
Montlivaultia [25]
  • M. trochoidiformis
  • Sega di Noriglio
Colonial ImprintsA Scleractinian Coral, member of Montlivaltiidae.
Pinacophyllum [24]
  • cf. P. sp.
  • Rotzo
Colonial ImprintsA Scleractinian Coral, member of Stylophyllidae
Stylophyllopsis [24]
  • S. ex gr. rudis
  • Rotzo
Colonial ImprintsA Scleractinian Coral, member of Stylophyllidae
Synastrea [24]
  • S. sp.
  • Rotzo
Colonial ImprintsA Scleractinian Coral, member of Synastraeidae

Brachiopod

GenusSpeciesStratigraphic positionMaterialNotesImages

Gibbirhynchia [26]

  • G. curviceps
  • Sospirolo
  • Isolated Shells

A Rhynchonellidan brachiopoda, member of Gibbirhynchiinae. Unusual genus in the Mediterranean region, more common on NW Europe

Linguithyris [26]

  • L. aspasia
  • Ballino
  • Sospirolo
  • Isolated Shells

A Terebratulidan brachiopoda, member of Nucleatidae. Typical Mediterranean region taxon in the Pliensbachian

Liospiriferina [26]

  • L. obtusa
  • Cortina d'Ampezzo
  • Sospirolo
  • Isolated Shells

A spiriferidan brachiopoda, member of Spiriferinidae. Typical Mediterranean region taxon in the Pliensbachian

Specimen of the same genus Liospiriferina rostrata Noir.jpg
Specimen of the same genus

Lychnothyris [27]

  • L. rotzoana
  • Sette Comuni
  • Erbezzo
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
  • Isolated Shells

A Terebratulidan brachiopoda, member of Plectoconchidae. Typical Mediterranean region taxon in the Pliensbachian, the main Branchiopod locally associated with the Lithiotids facies, where they formed rare mass occurrences at discrete intervals.

Prionorhynchia [26]

  • P.? flabellum
  • Cortina d'Ampezzo
  • Sospirolo
  • Isolated Shells

A spiriferidan brachiopoda, member of Spiriferinidae. Typical Mediterranean region taxon in the Pliensbachian

Bivalves

The Rotzo Formation is known mostly due to its massive bivalve associations of the genera Lithiotis , Cochlearites and Lithioperna that extended all along the Pliensbachian Trento Platform forming mass accumulations of specimens that formed Reef-Like structures. [28] This fauna appeared after the early Pliensbachian C-cycle perturbation, that triggered the diffusion of the Lithiotis Fauna, noted on the rapid widespread of this biota after the event layers. [28] All of the genera related with this fauna appeared on the lower Jurassic, and all but one became extinct before the Middle Jurassic. [18] This "Reefs" had a strong zonation, starting with the bivalves Gervilleioperna and Mytiloperna , restricted to intertidal and shallow-subtidal facies. Lithioperna is limited to lagoonal subtidal facies and even in some low-oxygen environments. Finally Lithiotis and Cochlearites are found in subtidal facies, constructing buildups. [18] This sections formed various kinds of ecosystems on the Trento platform, where it appeared in branched corals filled with (Spongiomorpha), Domal corals (Stromatoporida), tubular corals, Styllophyllidae corals, unidentified Cerioidea colonial corals, regular echinoid debris, sponges, and the solitary coral Opelismilia sp., with also aggregated snail shells. [18]

GenusSpeciesStratigraphic positionMaterialNotesImages
Avicula [29]
  • A. spinicosta
  • Noriglio
Isolated ShellsA clam, member of Aviculidae inside Ostreida

Cochlearites [30] [31] [32] [18]

  • C. loppianus
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Plicatostylidae inside Ostreida. A large bivalve, with a subequivalved shell, up to 60–70 cm high. It is one of the Three main bivalves recovered on the Lithiotis Facies, with its accumulations generally overlying megalodontid coquinas. [31]

Cypricardinia [29]
  • C. incurvata
  • Noriglio
  • Cornacalda
Isolated ShellsA clam, member of Trapezidae inside Cardiida

Eomiodon [30] [31] [33]

  • E. serradensis
  • E. baroni
  • E. gardeti
  • E. vulgaris
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of Neomiodontidae inside Veneroidei. The so-called Eomiodon horizon represents the lower Rotzo Formation, composed of organic-rich marlstones with abundant specimens of this genus, typical of stressed environment with low salinity. [30] This genus considered an opportunistic shallow infaunal suspension feeder, and the marker genus for brackish environments. [33]

Gervillia [29] [34]

  • G. buchi
  • G. lamellosa
  • G. volanensis
  • G. spp.
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Noriglio
  • Nosellari
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Isolated Shells

An Oyster, member of Bakevelliidae inside Pteriida. Found on greater accumulations on lower shale-dominated levels

Specimen of the genus Gervillia inflata - retico azzarola lc.JPG
Specimen of the genus

Gervilleioperna [30] [31] [32]

  • G. ombonii
  • G. sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

An oyster, member of Plicatostylidae inside Ostreida. On the Rotzo formation this genus become abundant along rootlets, indicative of a very shallow and restricted lagoon or marsh environment. [31]

Gresslya [29] [27]
  • G. elongata
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
  • Noriglio
Isolated ShellsA clam, member of Ceratomyidae inside Pholadidea.
Homomya [25]
  • H. cf. punctifera
  • Sega di Noriglio
Isolated ShellsA clam, member of Pleuromyidae inside Pholadidea.
Lima [25]
  • L. norigliensis
  • L. gigantea
  • Sega di Noriglio
Isolated ShellsA clam, member of Limidae inside Pteriomorphia
Lithophaga [25]
  • L. tirolensis
  • Sega di Noriglio
Isolated ShellsA mussel, member of the family Mytilidae inside Mytilida

Lithioperna [30] [31] [32] [18]

  • L. scutata
  • L. spp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Plicatostylidae inside Ostreida. This genus was found to be a bivalve with a byssate juvenile stage that developed different modes of life on the adulthood depending on the individual density and bottom firmness. [32]

Specimen of the genus Lithioperna scutata - MUSE.jpg
Specimen of the genus

Lithiotis [24] [30] [31] [32] [18]

  • L. problematica
  • L. spp.
  • Altipiano d'Asagio
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Plicatostylidae inside Ostreida. It is the major Bivalve identified on the formation, and the genus that gives the name to the Lithiotis fauna. [31] Large, large and aberrant bivalves present on mostly of the Trento Platform. [32] Its accumulation have had different denominations on literature, such as banks, bioherms, biostromes, bivalve reefs or bivalve mounds. [31]

Lucina [25]
  • L spp.
  • Val d'Assa
  • Cornacalda
Isolated ShellsA clam, member of Lucinidae inside Lucinida
Modiolus [25]
  • M. tirolensis
  • M. cf. hillana
  • Rotzo
  • Val d'Assa
Isolated ShellsA mussel, member of the family Mytilidae inside Mytilida
Example of extant specimen Modiolus capax, fat horse mussel.jpg
Example of extant specimen

Mytiloperna [25] [30] [31] [32]

  • M. mirabilis
  • M. bittneri
  • M. lepsii
  • M. transalpinus
  • M. cf. pernoides
  • M. spp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Val d'Assa
  • Sega di Noriglio
  • Cornacalda
  • Mandrielle
  • Monte Gaza
  • Ciago bei Verzano
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

An oyster, member of the family Malleidae inside Ostreida.

Opisoma [30] [31] [22]

  • O. excavatum
  • O. menchikoffi
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of Astartidae inside Carditida. Is considered a genus that evolved from shallow burrowing ancestors, becoming a secondarily semi-infaunal edgewise recliner adapted to photosymbiosis. [22]

Pachygervillia [35]

  • P. anguillaensis
  • P. taramellii
  • Vaio dell’Anguilla
  • Vajo del Paradiso
  • Val di Sella
  • Viote section

Isolated Shells

An oyster, member of Plicatostylidae inside Ostreida.

Pachyrisma [34]

  • P. (Pachymegalodon) chamaeformis
  • P. (Durga) crassa
  • P. (Durga) nicolisi
  • P. ssp.
  • Bellori
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Nosellari
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo
  • Cimoncello di Toraro
  • Campomolon

Isolated Shells

A clam, member of Megalodontidae inside Megalodontida.

Pecten [25]
  • P. norigliensis
  • P. lens
  • P. cf. norigliensis
  • P. cf. spatulatus
  • Sega di Noriglio
  • Cornacalda
  • Rotzo
  • Mte. Erio
Isolated ShellsA scallop, member of the family Pectinidae inside Pectinida
FMIB 48812 Pecten pallium L, East Indies.jpeg
Pholadomya [27]
  • P. athesiana
  • P. norigliensis
  • Vajo dell'Anguilla
  • Sega di Noriglio
  • Cimoncello di Toraro
  • Campomolon
Isolated ShellsA clam, member of Pholadomyidae inside Pholadomyida.
Specimen of the genus Pholadomya lariana - retico azzarola lc.jpg
Specimen of the genus
Pleuromya [29]
  • P. elegans
  • P. cf. elongata
  • Sega di Noriglio
Isolated ShellsA clam, member of Pleuromyidae inside Pholadidea.
Plicatostylus [35]
  • P. gregarious
  • Altipiano d'Asagio
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens
An oyster, type member of Plicatostylidae inside Ostreida. It has been synonymized with Lithiotis
Protodiceras [27]
  • P. pumilum
  • P. spp.
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
Isolated ShellsA clam, member of Megalodontidae inside Megalodontida.

Pseudopachymytilus [30] [31] [32]

  • P. mirabilis
  • P. spp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, incertae sedis inside Pterioida. On the Rotzo formation this byssate bivalve indicates a shallow subtidal or intertidal environment. [32]

Pteria [27]
  • P. volanensis
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
Isolated ShellsAn oyster, member of Pteriidae inside Ostreida.
Extant specimen of the genus Pteriidae - Pteria penguin.jpg
Extant specimen of the genus
Tellina [25]
  • T?. cornacaldensis
  • Cornacalda
Isolated ShellsA clam, member of Tellinidae inside Tellinoidea
Example of extant specimen Tellina pulchella.jpg
Example of extant specimen

Ammonoidea

GenusSpeciesStratigraphic positionMaterialNotesImages

Charmasseiceras [36]

C. sp.

Serrada (Folgaria, Trento)

Shells

An ammonite of the family Schlotheimiidae. A very rare genus on the layers of the formation, being found only a few specimens.

Fuciniceras [36] [37]

  • F. suejense
  • F. portisi

Shells

An Ammonite of the Family Hildoceratidae

Fuciniceras Fuciniceras portisi.jpg
Fuciniceras

Juraphyllites [36]

  • J. libertus

Contrada Ronchi (Recoaro Terme, Vicenza)

Shells

Type member of the family Juraphyllitidae. It is the most abundant Ammonite found on the Rotzo Formation

Juraphyllites (G) Philloceratina.jpg
Juraphyllites (G)
Protogrammoceras [38]
  • P. gr. celebratum-italicum
  • Monte Baldo
ShellsAn Ammonite of the family Hildoceratidae.

Gastropoda

GenusSpeciesStratigraphic positionMaterialNotesImages

Anticonulus [39]

  • A. acutus

Certosa di Vedana

Shells

A marine gastropod (Top Snail) of the Family Trochidae inside Trochoidea.

Aptyxiella [25] [34]

  • A. norigliensis
  • A. spp.
  • Bellori
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Nosellari
  • Sega di Noriglio
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Shells

A marine gastropod (snail), member of Nerinellidae inside Nerineoidea.

Ataphrus [39]

  • A. (Ataphrus) latilabrus
  • A. (Ataphrus) cordevolensis

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Ataphridae inside Trochoidea.

Austriacopsis [39]

  • A. austriaca

Certosa di Vedana

Shells

A marine gastropod (snail) of the Family Fissurellidae inside Fissurelloidea.

Discohelix [39]

  • D. excavata

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Discohelicidae inside Vetigastropoda.

Discohelix tunisiensis apical.jpg

Eucyclidae [39]

Indeterminate

Certosa di Vedana

Shells

A marine gastropod (snail) of the Family Eucyclidae inside Seguenzioidea.

Eucyclus [39]

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Eucyclidae inside Seguenzioidea.

Eucyclus capitaneus 01.JPG

Emarginula [39]

  • Certosa di Vedana
  • Val d'Arsa

Shells

A marine gastropod (limpet) of the family Fissurellidae inside Fissurelloidea.

Emarginula crassa (Sowerby).jpg

Globularia [40]

  • G. sp.

Tonezza del Cimone

Shells

A marine gastropod (snail) of the family Ampullinidae inside Campaniloidea.

Globularia sigaretina 02.jpg

Guidonia [39]

  • G. pseudorotula

Certosa di Vedana

Shells

A marine gastropod (snail) of the family Trochonematidae inside Murchisoniina.

Natica [29]
  • N. tridentina
  • N. spp.
  • Albaredo bei Roveredo
  • Noriglio
ShellsA marine gastropod (Moon snail) of the family Naticidae inside Sorbeoconcha
Natica hebraea.jpg

Neritopsis [39]

  • N. fabianii
  • N. spp.
  • Certosa di Vedana
  • Bellori

Shells

A marine gastropod (snail), type genus of the family Neritopsidae inside Cycloneritimorpha.

Patella [29]
  • P. conoidea
  • P. costata
  • P. (Scurria?) tirolensis
  • Noriglio
  • Cornacalda
  • Val d'Arsa
ShellsA marine gastropod (limpet) of the family Patellidae inside Patellogastropoda

Plectotrochus [39]

  • P. sp.

Certosa di Vedana

Shells

A marine gastropod (Top snail) of the family Trochidae inside Trochoidea.

Proacirsa [39]

Certosa di Vedana

Shells

A marine gastropod (snail) of the family Gordenellidae inside Allogastropoda.

Pseudonerinea [40]

  • P. terebra

Tonezza del Cimone

Shells

A marine gastropod (snail) of the family Pseudonerineidae inside Nerineoidea.

Pseudorhytidopilus [39]

  • P. detonii

Certosa di Vedana

Shells

A marine gastropod (limpet) of the family Acmaeidae inside Patellogastropoda.

Tretospira [40]

  • T. tridentina

Tonezza del Cimone

Shells

A marine gastropod (periwinkle) of the family Purpurinidae inside Littorinoidea.

Trochus [29]
  • T. sinister
NoriglioShellsA marine gastropod (Top snail) of the family Trochidae inside Trochoidea.
Trochus stellatus (150558183).jpg

Echinodermata

GenusSpeciesStratigraphic positionMaterialNotesImages
Hypodiadema [29]
  • H. sp.
  • Noriglio
ScleritesA Pseudodiadematidae Euechinoidean
Pentacrinites [29] [25]
  • P. basaltiformis
  • P. sp.
  • Monte Pombo
SectionsA Pentacrinitidae Isocrinidan
Pentacrinites NT.jpg

Polydiadema [41]

  • P. depressum
  • Monte Roite

Two specimens (MCV.20/02 and MCV.20/03)

An Emiratiidae Phymosomatoidan. This Echinoids are recovered from a marginal marine layer, with abundant bivalves, gastropods, small corals, often found in concentrations due to tempestites. [41]

Pseudodiadema [25]
  • P. roveredanum
  • P. cobellii
  • P. veronense
  • P. spp.
  • Monte Pombo
  • Sega di Noriglio
  • Albaredo bei Roveredo.
Multiple specimensA Pseudodiadematidae Euechinoidean

Crustacea

GenusSpeciesStratigraphic positionMaterialNotesImages
Cypris [29] [25]
  • C. rotzoana
NoriglioValvesAn Ostracodan of the family Cyprididae inside Podocopida

Eryma [42]

  • E. (Phlyctisoma) cf.sinemurianum

Valbona Area. [42]

Slightly deformed Exuvia

An Erymid Decapodan Crustacean. With a rostrum about 1.3 cm long and the cephalic part of carapace about 2.5 cm the specimen probably reached a total length between 9–10 cm, being one of the largest specimens belonging to this species. Frequent association with Thalassinoides burrows. [42] [43]

Example of Eryma specimen Eryma mandelslohi (Krebs) - Oberer Brauner Jura - Bissingen unter Teck.jpg
Example of Eryma specimen

Klieana [44]

  • K. sp.

Tonezza del Cimone. [44]

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The earliest record of the genus, the next youngest records of the genus are from Middle Jurassic sequences of France and Great Britain. [44]

Limnocythere [44]

  • L. sp.

Tonezza del Cimone. [44]

Valves

An Ostracodan of the family Limnocytherinae inside Cytheracea. High probability to be a new species of Limnocythere since the authors know of no other with similar posterolateral sulcation. [44]

Phraterfabanella [44]

  • P. tridentinensis

Tonezza del Cimone. [44]

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The assemblage is dominated (>95%) by this taxon. [44] It is a rather Medium-sized Ostracodan and markedly sexually dimorphic (males more elongate and more subrectangular versus shorter, more inflated and more subtriangular females). [44] it is likely that the palaeoenvironment was somewhat "stressed" and probably influenced by Salinity, where this genus would adapt better that Other Ostracodans (is related to the modern euryhaline species, Cyprideis torosa). [44]

Annelida

GenusSpeciesStratigraphic positionMaterialNotesImages

Schistomeringos [45]

  • S. expectatus
  • Between Ferrazza and Campodalbero
  • Between Nosellari and Dazio
  • Between Virti and Osteria alla Stanga
  • Between Chiesa S. Martino and Zaffoni

Isolated scolecodonts

A polychaete of the family Dorvilleidae. Unlike the modern counterparts that live in deeper environments, this species is found linked with shallow marine facies

Extant specimen of the same genus Schistomeringos rudolphii (YPM IZ 100176).jpeg
Extant specimen of the same genus

Ichnofossils

In the Western Venetian Prealps a shallow-water, oceanic carbonate platform system, the Trento platform, developed on the Early Jurassic, producing a large succession of massive to well-bedded white Limestones, several 100 m (330 ft) thick that are part of the Calcari Grigi Group, where the Rotzo Formation is the Upper Member. [46] On the local limestone of the Rotzo Formation deep burrowing is a very common type of biogenic activity, as is shown due to the presence of a large characteristic network of burrows which reach down to the lagoonal, marly-clayey assigned strata, suggesting intense bioturbation by large unknown organisms, perhaps giant decapod crustaceans (Probably members of the family Erymidae), although, the burrows found are not closely related to the ones of Shrimps or other decapods, but resemble those of Stomatopoda and Malacostraca. [46] Other includes abandoned burrows, vertical biogenic action and infilling on the sea substrate. [46]

GenusSpeciesStratigraphic positionMaterialNotesImages

Asteriacites [47]

  • A. lumbricalis
  • A. isp.

Coste dell’Anglone dinosaur ichnosite

Star-shaped impressions

An ichnogenus that represents the resting trace resting activity of sea stars (Asteroidea) and brittle stars (Ophiuroidea). [47] The recovered from the Rotzo formation are probably from specimens trapped on tidal changes. [47]

Asteriacites Asteriacites lumbricalis (von Schlotheim, 1820), France - 20110615-01.jpg
Asteriacites

Chomatichnus [46]

  • C. wegberensis

Campomolon, Valbona

Vertical burrows with preserved entrances

It is difficult to suggest this ichnogenus because on the Formation the vertical and lined burrow with a deep central crater typical of Chomatichnus is never preserved. [46] It resemble described burrows of endobenthic thalassinidean decapods, specially Callianassa subterranea of modern North Sea, Callianassa major, Callianassa californensis or Upogebia pugettensis. [46] It can be also Serpulidae Polychaetan burrows.

Chondrites [43] [42] [48] [46]

  • C. isp.

Campomolon, Valbona

Burrowing and track Ichnofossils

In the Rotzo FormationOphiomorpha irregulaire local specimens the walls are extensively reworked by small, secondary burrowers assigned to the ichnogenus Chondrites. [42] Interpreted as the feeding burrow of a sediment-ingesting animal.

Chondrites Chondrites.JPG
Chondrites

Glossifungites [46]

  • G. isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

On the local waters during the Lower Jurassic, water motion due to the hurricane action truncated many mounds causing changes on the deposition on the sea-floor and inducing various phases of substrate infillings with carbonate mud, fine-to coarse-grained skeletal debris and fecal pellets. [46] They are assigned to Priapulida, Serpulidae, Siboglinidae, Sabellidae or even Oweniidae.

Ophiomorpha [43] [42] [48] [46]

  • O. irregulaire
  • cf. O. nodosa
  • O. isp. A
  • O. ? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Two major types of Ophiomorpha where recovered, a smaller one from 2–4 cm in size and the larger one from 5–15 cm in diameter. [48] They are complex burrow systems lined with pelletoidal sediments generally infilled by coarse-grained detritus. [43] Specimens Seems partly destroyed by weathering. [42]

Ophiomorpha Ophiomorpha.jpg
Ophiomorpha

Skolithos [46]

  • S. isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

Ichnofossils done by organisms advancing along the bottom surface. Very narrow, vertical or subvertical, slightly winding unlined shafts filled with mud. Locally, post hurricane burrows are found in fine-grained tempestite beds and muddy layers and they are Domichnia, Fodinichnia and Chemichnia. [46]

Skolithos Skolithos icnofosil ilustracion.jpg
Skolithos

Thalassinoides [43] [42] [48] [46]

  • T. suevicus
  • T.? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Thalassinoides suevicus has been found on mostly of the middle-upper part of the Rotzo Formation associated with muddy deposits. It ranges from 2–5 cm to 6–10 cm and the larger ones from 10 to 16 cm. [43] Y-shaped tunnels that seen in cross-section reveal circular walls made of pelletoidal grainstone, being more probably a fodichnia of a burrowing animal. [48] A few ichnofossils include simple cylindrical tubes up to 80 cm in length, that resemble crustacean described in Seychelles. [48]

Thalassinoides Hermann Krone - Spurenfossil Thalassanoides aus der sachsischen Kreide (1871).jpg
Thalassinoides

Vertebrata

Chondrichthyes

Episodic surficial bioturbation is common on the Rotzo Formation, due to invertebrates or fishes which alter intensely but rapidly the substrate for many cm in depth. [46] It this case the Bioturbation is assigned to mollusc predatory Chondrichthyes, such as Hybodontidae and Heterodontidae. [46] It also resembles present day flat angel sharks or Squatinidae and Guitarfish such as Rhinobatos. [46]

GenusSpeciesStratigraphic positionMaterialNotesImages

Chimaeriformes [49]

Indeterminate

  • Campiluzzi Tunnel, west of Monte Buso.
  • Teeth
  • Scales

Uncertain Holocephalii remains

Hybodontiformes [49] Indeterminate
  • Campiluzzi Tunnel, west of Monte Buso.
  • Teeth
  • Scales
Uncertain assignation

Hybodus [50] [49]

  • H. sp.
  • Campiluzzi Tunnel, west of Monte Buso.
  • Teeth
  • First dorsal fin spine

A shark, type genus of the family Hybodontidae inside Hybodontiformes. A very prolific genus, found mostly on open marine units.

Hybodus reconstruction Hybodus hauffianus.png
Hybodus reconstruction

Actinopterygii

Unidentified fish scales are known from the formation. [51]

GenusSpeciesStratigraphic positionMaterialNotesImages

Ginglymodi [49]

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

Remains of Ginglymodi bony fishes, previously referred to Semionotiformes and/or the genus Lepidotes

Lepidotes, example of Early Jurassic Ginglymodi fish Lepidotes 1904.png
Lepidotes, example of Early Jurassic Ginglymodi fish

Pachycormiformes [50]

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

Actinopterygii fishes, the oldest record of the family

Pachycormus, example of Pachycormiform Fish Pachycormus1.jpg
Pachycormus, example of Pachycormiform Fish

Pholidophoriformes [52] [51] [50]

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Complete Specimen
  • Isolated Teeth
  • Isolated Scales

Teleostei fishes, with genera know to form large Fish schools.

Pholidophorus [29]
  • P. beggiatianus
Sega di Noriglio
  • Partial specimen
A Bony fish, member of the family Pholidophoridae inside Pholidophoriformes
Example of specimen from the same genus Pholidophorus bechei.JPG
Example of specimen from the same genus

Pycnodontiformes [52] [51] [50]

Indeterminate

  • Campiluzzi Tunnel, west of Monte Buso
  • Sega di Noriglio
  • Isolated Teeth
  • Isolated Scales

Teleostei Fishes of small size, related to lagoonar environments, previously referred to the genus Pycnodus

Haqelpycnodus, example of Pycnodont Fish Haqelpycnodus picteti.png
Haqelpycnodus, example of Pycnodont Fish

Crocodyliformes

GenusSpeciesLocationMaterialNotesImages

Teleosauridae ? [52] [51]

Indeterminate

Monte Pasubio

Isolated Teeth [52] [53]

A Thalattosuchian Mesoeucrocodylian. It was cited the presence of fragmentary and poorly preserved remains of “Teleosauridae?”. The fossils were found on lagoonal deposits. [51]

Example of Thallatosuchian, Macrospondylus Steneosaurus NT small.jpg
Example of Thallatosuchian, Macrospondylus

Dinosaurs

On the Inter-supratidal levels show that on the Rotzo Formation the Tracksites were rarely hit by Storm Waves. [54] Bella Lastra Tracksite recovers this environment, where the shales present (Where Fish & Crocodrylomorph Remains where found) are filled with plant roots, pollen grains, spores, freshwater ostracodes and the bivalve Eomiodon. [54] This was deposited mostly on a Lagoonar environment with abundant shed vegetation. [54] The main local Track record recovers specially Theropoda and Sauropoda, where the Sauropods are the most abundant tracks present (70%), moving the Otozum-like Sauropodomorphs of lower levels, with the climate changing from arid to humid. [54] The Coste dell’Anglone ichnosite is considered as derived from semi-arid tidal flat deposits, due to the abundance of Cheirolepidiaceae Pollen. [12] As the Pliensbachian Trento Platform is considered to be formed by a channelized barrier formed by sand, with reiterate tide emersions. The dinosaurs living here probably trampled on the subtidal flats looking for fishes trapped on tidal-derived ponds. [12]

Color key
Taxon Reclassified taxonTaxon falsely reported as presentDubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
GenusSpeciesLocationMemberMaterialNotesImages

Anchisauripus [12] [51] [55]

  • A. isp. A
  • Coste dell'Anglone tracksite

Tovel Member

Footprints

Theropod tracks, type member of the ichnofamily Anchisauripodidae, incertae sedis inside Neotheropoda. Probably related to Coelophysidae, such as Procompsognathus and Panguraptor or Coelophysoidea, such as Lophostropheus . All tracks were probably produced by individuals with the same functional anatomy of the hind foot. [54]

Example of Anchisauripus track Anchisauripus tuberosus.jpg
Example of Anchisauripus track

Kayentapus [12] [51] [55] [56]

  • K. isp. A
  • K. isp. B
  • Coste dell'Anglone tracksite
  • Bella Lasta tracksite
  • Stol dei Campiluzzi tracksite

Tovel Member

Footprints

Theropod tracks, member of the ichnofamily Eubrontidae, incertae sedis inside Neotheropoda. Includes Kayentapus sp. assigned to Sinosaurus -alike Theropods, but on the Rotzo Formation include also Abelisauroid-like tracks, similar to the foot of the genus Velocisaurus . [51] The tracks measure 30 cm long and have a distinctive robust digit III. [54] The Coste dell´Anglone tracksite had a pes with the metatarsal III elongated, as found on Dilophosaurus . [12]

Example of Kayentapus track Kayentapus isp. - MUSE.jpg
Example of Kayentapus track

Moyenisauropus [57] [55]

M. isp.

  • Marocche di Dro tracksite

Tovel Member

Footprints

Thyreophoran tracks, type member of the ichnofamily Moyenisauropodidae, incertae sedis inside Neornithischia. Is considered by some authors synonymous with the ichnogenus Anomoepus . The tracks adscribed share some morphological affinity with those referred to the Ankylosauridae, such as the ichnogenera Metatetrapodus and Tetrapodosaurus , and probably belonged to medium-sized Scelidosaurs or other kind of Thyreophorans. Include Specimens of up to 30 cm, suggesting +4 m long scelidosauroids. [57]

Otozoum? [57] [55]

  • O.? isp.
  • Marocche di Dro tracksite

Tovel Member

Footprints

Sauropodomorph tracks, member of the ichnofamily Otozoidae, incertae sedis inside Sauropodomorpha. A single trackway that strongly differs from the others found on the same tracksite. It wears morphological and morphometrical appearance that suggests relationships with a prosauropod trackmaker. [57]

Example of Otozoum track Otozoum tracks cropped.jpg
Example of Otozoum track

Parabrontopodus [58]

  • P. isp. A
  • P. isp. B
  • Marocche di Dro tracksite
  • Bella Lasta tracksite

Tovel Member

Footprints

Sauropod tracks, type member of the ichnofamily Parabrontopodidae, incertae sedis inside Sauropodomorpha. Tracks from large basal members of Sauropoda. The larger tracks comprise elliptic pes (L=70 cm; W=50 cm) and subcirluar manus prints (L=33 cm; W=30 cm), what are among the largest known dinosaur tracks of the lower jurassic. [54] While nearly destroyed, the Tracks resemble the foot of the genus Barapasaurus . There is a type B of Parabrontopodus slightly smaller that resemble the genus Vulcanodon .

Flora

A320, Casuarina branch over Gold Rock Beach, Grand Bahama, 2010.JPG
Bald cypress (Taxodium distichum), Saw Mill Pond, Caddo Lake State Park, Harrison County, Texas, USA (April 2017).jpg
Rotzo Formation nearby land hosted Bahamian-type biomes (Gold Rock Beach in the picture) with nearby " Taxodium swamp"-like coniferous associations dominated by the Pagiophyllum producer

The Rotzo Formation was deposited on a Lagoon on the emerged Trento Platform, leading to a well preserved fossil flora record, collected and studied since the 19th century. [59] The great level of floral fossilization has even allow to discovery fossil amber on the Bellori section. This amber has allowed to determine that the environment was a shallow tropical lagoon, only a few metres deep, closed seawards by oolitic shoals and bars. [59] This levels are dominated by a high abundance of Classopollis sp. (Cheirolepidiaceae), associated with dry and wet climates in coastal areas. The abundance of this group of conifers is also proven by the high presence of cuticles of Pagiophyllum cf. rotzoanum. [60] Beyond this genera, spores are highly diversified, including from Sphenophyta, Selaginellales to Ferns, with abundance (more than 50%) of trilete spores ( Deltoidospora ), what suggest a good freshwater availability corresponding to a wet climate, proven also by the presence of aquatic miospores of algae such as Botryococcus and Pseudoschizaea . [59] The climate was arid on some seasons with monsoon months. The abundance of marine fauna on this sediments, including fragments of corals, bryozoans, bivalves, echinoids, and foraminifera, suggest transport from brackish lagoons and marshes, probably occurred during storm events. [59] Overall data points to a marshy and/or submerged paleoenvironment, comparable to the present-day Taxodium swamp or cypress swamp and a Bahamian-type marine environment in a rather wet monsoonal climate as in the modern southeastern Asia. [59] [60]

Amber

The Rotzo Formation records one of the few Early Jurassic assamblages with Amber in the world, the nicknamed "Bellori amber" found near the village of the same name. [61] Made mostly of small droplets of less than 1 mm with exceptionally preserved morphology its likely the amber producing plants were likely not stressed or affected by disease. [61] Due to the small size animal inclusion have not been found. However various plant materials, identified “mummified wood” and wood tissue are known. [61] Additionally large amounts of Circumpolles Cheirolepidiaceous pollen, and occasional freshwater algae Pseudoschizaea remains are included. [61] Several cuticle fragments are attributed to the araucariaceous or Hirmeriellaceae genus Pagiophyllum . [61] Those lived on a coastal and wet palaeoenvironment similar to the present-day Taxodium swamps with monsoonal seasons as in the modern southern Asia. [61]

Palynology

GenusSpeciesLocationMaterialNotes

Accincitisporites [62] [63]

  • A. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Incertae sedis; affinities with the Pteridophyta

Alisporites [61]

  • A. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Voltzia ( Willsiostrobus ) and Corystospermales

Aratrisporites [61]

  • A. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Lycophytes, in situ in Cyclostrobus , Lycostrobus and Annalepis zeiller.

Auritulinasporites [62] [61]

  • A. scanicus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Baculatisporites [62] [61]

  • B. comaumensis
  • B. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Osmundaceae in the Polypodiopsida.

Calamospora [61]

  • C. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Calamitaceae in the Equisetales.

Camarozonosporites [62] [61]

  • C. cf. heskemensis
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Cabochonicus [63]

  • cf. C. carbunculus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Selaginellaceae

Chasmatosporites [61]

  • C. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the family Zamiaceae in the Cycadales. It is among the most abundant flora recovered on the upper section of the coeval Rya Formation, and was found to be similar to the pollen of the extant Encephalartos laevifolius . [64]

Classopollis [62] [61]

  • C. sp
  • C. classoides
  • C. meyeriana
  • C. torosus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Concavisporites [62] [61]

  • C. crassexinius
  • C. sp. A
  • C. sp. B
  • C. sp. C
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Cycadopites [62] [61]

  • C. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

Affinities with the family Cycadaceae and Bennettitaceae.

Deltoidospora [62] [61]

  • D. minor
  • D. toralis
  • D. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Densosporites [62] [61]

  • D. fissus
  • D. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Eucommiidites [62] [61]

  • E. troedssoni

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen

Type pollen of the Erdtmanithecales, related to the Gnetales.

Foveosporites [62] [61]

  • F. visscheri
  • F. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores.

Affinities with Selaginellaceae

Granuloperculatipollis [61]

  • G. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Horstisporites [62] [63]

  • H. harrisii
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Hughesisporites [63]

  • cf. H. orlowskae
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Ischyosporites [62] [61]

  • I. variegatus
  • I. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Leptolepidites [62] [61] [63]

  • L. cf. major
  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Limbosporites [61]

  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Lycopodiacidites [62] [61]

  • L. cerebriformis
  • L. regulatus
  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the Ophioglossaceae in the Filicales.

Lycopodiumsporites [62] [61] [63]

  • L. semimuris
  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Monosulcites [61] [63]

  • M. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Karkeniaceae and Ginkgoaceae in the Ginkgoales.

Perinopollenites [61] [63]

  • P. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Cupressaceae in the Pinopsida.

Pinuspollenites [61] [63]

  • P. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Pinaceae in the Pinopsida.

Retitriletes [62] [63]

  • R. semimuris
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Retusotriletes [62] [63]

  • R. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Skarbysporites [62] [61] [63]

  • S. puntii
  • S. elsendoornii
  • S. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Schizosporis [62] [61] [63]

  • S. cf. reticulatus
  • S. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Cysts

Affinities with Chlorophyta

Spheripollenites [62] [61] [63]

  • S. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida

Tigrisporites [62] [61] [63]

  • Ti. jonkeri
  • T. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Todisporites [62] [61] [63]

  • T. minor
  • T. cinctus
  • T. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Osmundaceae in the Polypodiopsida.

Trachysporites [62] [61] [63]

  • T. fuscus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Trileites [62] [63]

  • cf. T. murrayi
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Selaginellaceae

Verrutriletes [62]

  • cf.V. compostipunctatus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Incertae sedis; affinities with the Pteridophyta

Vitreisporites [62] [61] [63]

  • V. pallidus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

From the family Caytoniaceae in the Caytoniales.

Dasycladales

GenusSpeciesLocationMaterialNotesImages

Palaeodasycladus [18] [56]

  • P. fragilis
  • P. mediterraneus
  • P. spp.
  • Coste dell'Anglone tracksite
  • Marocche di Dro tracksite
  • Bellori
  • Garzon di Scotto

Calcified Thalli

A Green Algae of the family Dasycladaceae. A reefal algae usually found in carbonate settings along all the Mediterranean

Sestrosphaera [65]
  • S. liasina
  • Malga Mandrielle
Calcified ThalliA Green Algae of the family Triploporellaceae.

Equisetales

GenusSpeciesLocationMaterialNotesImages

Equisetites [66] [67]

  • E. bunburyanus
  • E. veronensis
  • E. minor
  • Roverè di Velo
  • Campo Fontana
  • Val d´Assa
  • Pernigotti

Stems

Affinities with Equisetaceae. Related to humid environments, the stems of local Equisetopsids show a rather large grown cycle, like the Bamboo on the modern Southern Asia, implicating tall Plants influenced by a Tropical Climate.

Phyllotheca [66] [67]

  • P. brongniartiana
  • P. equisetiformis
  • Roverè di Velo

Leaf Whorl

Affinities with Phyllothecaceae inside Equisetales

Phyllotheca brongniartiana from the Rotzo Formation Phyllotheca brongniartiana.jpg
Phyllotheca brongniartiana from the Rotzo Formation

Pteridophytes

GenusSpeciesLocationMaterialNotesImages

Coniopteris [67] [68]

  • C. hymenophylloides
  • Rotzo

Fronds

Affinities with Polypodiales inside Polypodiidae.

Danaeites [66] [67]

  • D. heeri
  • D. brongniartiana
  • Rotzo
  • Val d´Assa
  • Bienterle
  • Selva di Progno

Fronds

Affinities with Marattiales inside Marattiopsida.

Dictyophyllum [66] [67]

  • D. sp.
  • Roverè di Velo

Fronds

Affinities with Dipteridaceae inside Gleicheniales.

Gleichenites [66] [67]

  • G. elegans
  • Roverè di Velo

Fronds

Affinities with Gleicheniaceae inside Polypodiopsida

Hymenophyllites [66] [67]

  • H. leckenbyi
  • Roverè di Velo

Fronds

Affinities with either Dicksoniaceae or Polypodiidae inside Polypodiopsida. Similar to the genus Coniopteris.

Laccopteris [66] [67]

  • L. rotzana
  • Rotzo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Marzaria [66] [67]

  • M. paroliniana
  • Roverè di Velo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Marzaria paroliniana from the Rotzo Formation Marzaria paroliniana.jpg
Marzaria paroliniana from the Rotzo Formation

Matonidium [66] [67]

  • M. rotzoana
  • Roverè di Velo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Phlebopteris [66] [67]

  • P. polypodioides
  • Val d´Assa

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Protorhipis [66] [67]

  • P. asarifolia
  • Roverè di Velo

Fronds

Affinities with Dipteridaceae inside Gleicheniales. A rather lower Fern, with great resemblance with the modern genus Dipteris .

Corystospermales

GenusSpeciesLocationMaterialNotesImages

Cycadopteris [66] [69] [70]

  • C. brauniana
  • C. heerii
  • C. heterophylla
  • Valle Zuliani
  • Rotzo
  • Roverè di Velo
  • Albaredo

Fronds

Affinities with Corystospermaceae inside Corystospermales. On the Roverè di Velo collection, C. brauniana is the most common Frond found. The Fronds belong to medium to large arboreal Ferns.

Cycadopteris brauniana and Cycadopteris sp., both recovered from different locations of the Rotzo Formation Cycadopteris browniana e Cycadopteris sp.JPG
Cycadopteris brauniana and Cycadopteris sp., both recovered from different locations of the Rotzo Formation

"Cyclopteris" [66] [67]

  • "C." minor
  • St. Bortolomeo

Fronds

Affinities with Corystospermaceae inside Corystospermales.

Dichopteris [66] [67]

  • D. rhomboidalis
  • D. paroliniana
  • D. angustifolia
  • D. visianica
  • D. micophylla
  • Roverè di Velo
  • Val d´Assa
  • Val Juliani
  • Val Salorno

Fronds

Affinities with Corystospermaceae inside Corystospermales.. Represents the largest "Seed Fern" Leaf in the fossil record, with leaves up to 70 cm, having an habit resembling the extant angiosperm Nypa fruticans . [71]

Dichopteris visianica from the Rotzo Formation Dichopteris visianica.JPG
Dichopteris visianica from the Rotzo Formation

Caytoniales

GenusSpeciesLocationMaterialNotesImages

Pseudosagenopteris [66] [67]

  • P. angustifolia
  • Roverè di Velo

Leaflets

Affinities with Caytoniaceae inside Caytoniales.

Sagenopteris [66] [67]

  • S. reniformis
  • S. goeppertiana
  • S. nilssoniana
  • Roverè di Velo

Leaflets

Affinities with Caytoniaceae inside Caytoniales. There is a superficial doubt with the assignation to S. goeppertiana, and due to that Roverè di Velo specimen may be confirmed by comparing them with original Zigno's Material.

Sagenopteris nilssoniana from the Rotzo Formation Sagenopteris nilssoniana.jpg
Sagenopteris nilssoniana from the Rotzo Formation

Cycadophyta

GenusSpeciesLocationMaterialNotesImages
Androstrobus [72]
  • A. ssp.
  • Roverè di Velo
  • Rotzo
Reproductive structureIncertade sedis inside Cycadophyta
Apoldia [67]
  • A. tenera
  • Roverè di Velo
  • Rotzo
LeafletsIncertade sedis inside Cycadophyta. Related with Cycad-like trees.
Cycadospadix [72]
  • C spp.
  • Roverè di Velo
  • Rotzo
Reproductive structureIncertade sedis inside Bennettitales or Cycadophyta

Bennettitales

GenusSpeciesLocationMaterialNotesImages
Blastolepis [72] [73]
  • B. otozamitis
  • B. acuminata
  • Roverè di Velo
  • Rotzo
Reproductive structureIncertade sedis inside Bennettitales.
Cycadeospermum [72]
  • C spp.
  • Roverè di Velo
  • Rotzo
Reproductive structureIncertade sedis inside Bennettitales or Cycadophyta
Deltolepis [67] [70]
  • D. mitra
  • Rotzo
Reproductive structureIncertade sedis inside Bennettitales or Cycadophyta

Lomatopteris [66] [67]

  • L. jurensis
  • Roverè di Velo

Fronds

Incertade sedis inside Bennettitales.

Lomatopteris jurensis from the Rotzo Formation Lomatopteris jurensis 09.jpg
Lomatopteris jurensis from the Rotzo Formation

Otozamites [69] [67] [70]

  • O.bunburyanus
  • O. veronensis
  • O. vicentinus
  • O. mattiellianus
  • O. nathorstii
  • O. feistmantelii
  • O. molinianus
  • O. massalongianus
  • O. spp.
  • Roverè di Velo
  • Rotzo
  • Val d´Assa
  • M. Pernigotti
  • S. Bortolomeo

Pinnate leaf fragments

Affinities with Williamsoniaceae inside Bennettitales. Overall, the genus Otozamites is among the most abundant flora genus recovered on some of the levels of the Rotzo Formation, and also one of the most diversified. It belongs to arbustive Bennetites.

Otozamites bunburyanus from the Rotzo Formation Otozamites bunburyanus.JPG
Otozamites bunburyanus from the Rotzo Formation

Pterophyllum [69] [67]

  • P. venetum
  • P. platyrachis
  • Roverè di Velo
  • Rotzo
  • Vall d´Assa
  • M. pernigotti
  • Scandolara

Leaflets

Affinities with Williamsoniaceae inside Bennettitales. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.

Ptilophyllum [69] [67] [70]

  • P. grandifolium
  • P. triangulare
  • P. spp.
  • Roverè di Velo

Leaves

Affinities with Williamsoniaceae inside Bennettitales. Was previously ascribed by Guiscardi (Director of the Geology Department of the Napoles University between 1861 al 1885) to Pachypteris visianica and Cycadopteris brauniana.

Ptilophyllum grandifolium from the Rotzo Formation Ptilophyllum grandifolium.JPG
Ptilophyllum grandifolium from the Rotzo Formation

Sphenozamites [69] [67]

  • S. rossii
  • S. spp.
  • Roverè di Velo

Leaflets

Affinities with Williamsoniaceae inside Bennettitales. Related with Cycad-like trees.

Weltrichia [69] [67]

  • W. oolithica
  • W. sp.
  • Roverè di Velo
  • Selva di Progno

Bennettite "Flower"

Affinities with Williamsoniaceae inside Bennettitales. Weltrichia is considered by some authors some kind of Bennetitalean Flower, putting that group on relationships with the Angiosperms.

Williamsonia [69] [67]

  • W. italica
  • Monte raut
  • Roverè di Velo

Bennettite "Flower"

Affinities with Williamsoniaceae inside Bennettitales.

Williamsonia italica from the Rotzo Formation Williamsonia italica.jpg
Williamsonia italica from the Rotzo Formation

Zamites [69] [67]

  • Z. goepperti
  • Z. ribeiroanus
  • Z. rotzoanus
  • Rotzo
  • M. pernigotti
  • S. Bortolomeo

Leaflets

Incertade sedis inside Bennettitales. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.

Ginkgoopsida

GenusSpeciesLocationMaterialNotesImages

Trevisania [66] [74]

  • T. furcellata

Val d´Assa

Leaves

Affinities with the genus Trichopitys , as probably a member of Karkeniaceae inside Ginkgoopsida, with strong resemblance with the genus Baiera, lumped in some papers as Baiera lindleyana.

Baiera a taxon that has been said to include Trevisania Baiera.jpg
Baiera a taxon that has been said to include Trevisania

Conifers

GenusSpeciesLocationMaterialNotesImages

Brachyphyllum [74] [69] [70]

  • B. tropidimorphyrn
  • B. graciliforme
  • B. kendallianum
  • B. appropinquatum
  • B. praetermissum
  • Roverè di Velo
  • Pernigotti
  • Boca di Trappola
  • Rotzo
  • Valle Zulliani
  • Branched shoots
  • Isolated leaves

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. Brachyphyllum tropidimorphyrn shows close resemblance between African and Venetian conifers and its distribution suggests a lowland araucarian forest. [75]

Brachyphyllum kendallianum from the Rotzo Formation Brachyphyllum in Vicenza.jpg
Brachyphyllum kendallianum from the Rotzo Formation

Dactylethrophyllum [74] [69] [70]

  • D. peristictum
  • Scandolara

Branched shoots

Affinities with Cheirolepidiaceae inside Coniferales.

Desmiophyllum [66] [70]

  • D. zeillerianum
  • D. rigidum
  • Roverè di Velo
  • Valle Zuliani

Isolated leaves

A possible Conifer leaf. Was suggested to have affinities with Czekanowskiales, sometimes found inside Ginkgoopsida, yet recent finds of it associated with the cone genera Sphaerostrobus and Ourostrobus points to a coniferophyte affinity, maybe as a member of Palissyaceae. [76]

Elatocladus [74]

  • E. zignoi
  • E. veronensis
  • cf. E. sp.
  • Roverè di Velo
  • Val d´Assa
  • Rotzo

Branched shoots

Affinities with Cupressaceae inside Coniferales. Arboreal plants similar to the modern genus Cunninghamia

Elatocladus zignoi from the Rotzo Formation Elatocladus zignoi.jpg
Elatocladus zignoi from the Rotzo Formation

Pagiophyllum [60] [69] [74] [70]

  • P. rotzoanum
  • P. vicentinum
  • P. veronense
  • P. magnipapillare
  • P. valdassense
  • P. robustum
  • P. revoltinum
  • Roverè di Velo
  • Val d´Assa
  • Rotzo
  • Pernigotti
  • Monte Carpani
  • Isolated Leaves
  • Branched Shoots
  • Cuticles

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. One of the specimens was assigned to Otozamites massalongianus, due to confusing the overlapping appearance and the Otozamites-like shape of the leaves of the apical portion of the main shoot.

Pagiophyllum rotzoanum from the Rotzo Formation Pagiophyllum rotzoanum.JPG
Pagiophyllum rotzoanum from the Rotzo Formation

Pelourdea [66] [67]

  • P. megaphylla
  • Roverè di Velo
  • Val d´Assa
  • Rotzo
  • Scandolara
  • Squaranton
  • Bienterle
  • Isolated Leaves
  • Pollen Organ

Incertae sedis inside Coniferales, initially identified as "Yuccites schimperianus", suggested as a member of its own family, the "Pelourdeaceae". A hygrophytic riparian conifer with herbaceous or shrubby habit. Some specimens are difficult to identify.

Stachyotaxus [69] [74]

  • S. spp.
  • Valle Zuliani
  • Roverè di Velo

Branched shoots

Affinities with Palyssiaceae inside Coniferales. Extinct group conifer leaves with similarities with Sequoia or Amentotaxus. Maybe Includes the species "Taxites vicentina".

"Taxites vicentina" Taxites vicetina.JPG
"Taxites vicentina"

Bibliography

  1. 1 2 Franceschi, M.; Dal Corso, J.; Posenato, R.; Roghi, G.; Masetti, D.; Jenkyns, H. C. (2014). "Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 410 (1): 255–263. Bibcode:2014PPP...410..255F. doi:10.1016/j.palaeo.2014.05.025 . Retrieved 12 November 2021.
  2. Castellarin, A.; Picotti, V.; Cantelli, L.; Claps, M.; Trombetta, L.; Selli, L.; Carton, A.; Borsato, A.; Daminato, F.; Nardin, M.; Santuliana, E.; Veronese, L.; Bollettinari, G. (2005). "Note Illustrative della Carta Geologica d'Italia alla scala 1:50.000, Foglio 080 Riva del Garda". Dipartimento Difesa del Suolo, Servizio Geologico d'Italia. 56 (2): 145. Retrieved 24 January 2022.
  3. "PBDB".
  4. Broglio Loriga, C.; Neri, C. (1976). "Aspetti paleobiologici e paleogeografici delle facies "Lithiotis" (Giurese inf.)". Rivista Italiana di Paleontologia e Stratigrafia. 82 (1): 651–151.
  5. 1 2 Masetti, D.; Fantoni, R.; Romano, R.; Sartorio, D.; Trevisani, E. (2012). "Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data". AAPG Bulletin. 96 (11): 2065–2089. Bibcode:2012BAAPG..96.2065M. doi:10.1306/03091211087 . Retrieved 12 November 2021.
  6. Mietto, P.; Roghi, G.; Zorzin, R. (2000). "Le impronte di dinosauri liassici dei Monti Lessini Veronesi [The Liassic dinosaur tracks from the Veronese Monti Lessini]". Bollettino del Museo Civico di Storia Naturale di Verona. Geologia Paleontologia Preistoria. 24 (2): 55–72.
  7. Masseti, D.; Posenato, R.; Bassi, D.; Fungagnoli, A. (2005). "The Rotzo Formation (Lower Jurassic) at the Valbona Pass (Vicenza Province)". IRIS Università degli Studi di Ferrara. 31 (5): 35–56. Retrieved 3 January 2022.
  8. 1 2 Neri, Mirco; Papazzoni, Cesare Andrea; Vescogni, Alessandro; Roghi, Guido (2015). "Cyclical variation in paleoenvironments of the Rotzo formation (Lower Jurassic, Lessini Mts., N Italy)". STAMPA. 33 (1): 74–75.
  9. Urban, I. (2017). "Petrografia e geochimica delle ooliti del Giurassico inferiore della Piattaforma di Trento". Area 04 - Scienze della Terra > GEO/02 Geologia Stratigrafica e Sedimentologica. 1 (1): 1–203. Retrieved 3 January 2022.
  10. Castellarin, A.; Picotti, V. (1990). "Jurassic tectonic framework of the eastern border of the Lombardian basin". Eclogae Geologicae Helvetiae. 83 (3): 683–700.
  11. 1 2 3 Bernardi, M.; Petti, F. M.; Avanzini, M. (2010). "Palaeoenvironmental implications of Asteriacites lumbricalis in the coste dell'Anglone sinemurian dinosaur ichnosite (NE Italy)". Palaeontologia Electronica. 13 (3): 1–8.
  12. 1 2 3 4 5 6 Petti, F. M.; Bernardi, M.; Ferretti, P.; Tomasoni, R.; Avanzini, M. (2011). "Dinosaur tracks in a marginal marine environment: the Coste dell'Anglone ichnosite (Early Jurassic, Trento Platform, NE Italy)". Italian Journal of Geosciences. 130 (1): 27–41. Retrieved 3 January 2022.
  13. 1 2 3 4 BASSI, DAVIDE; FUGAGNOLI, ANNA; POSENATO, RENATO; SCOTT, DAVID B. (2008). "Testate Amoebae from the Early Jurassic of the Western Tethys, North-East Italy". Palaeontology. 51 (6): 1335–1339. Bibcode:2008Palgy..51.1335B. doi: 10.1111/j.1475-4983.2008.00817.x . ISSN   0031-0239. S2CID   129670565.
  14. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Fugagnoli, Anna (2004). "Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps)". Palaeogeography, Palaeoclimatology, Palaeoecology. 205 (1–2): 111–130. Bibcode:2004PPP...205..111F. doi:10.1016/j.palaeo.2003.12.004. ISSN   0031-0182.
  15. Fugagnoli, Anna (1999). "Cymbriaella, a new foraminiferal genus (textulariina) from the early jurassic of the venetian prealps (Northeastern Italy)". Revue de Micropaléontologie. 42 (2): 99–110. Bibcode:1999RvMic..42...99F. doi:10.1016/s0035-1598(99)90102-2. ISSN   0035-1598.
  16. Fugagnoli, A. (1996). "On the occurrence of Duotaxis metula Kristan (Foraminifera) in the Lower Jurassic (Calcari Grigi, Venetian Prealps, Italy)". Revue de paléobiologie. 15 (2): 385–392.
  17. Fugagnoli, A. (2000-04-01). "First Record Of Everticyclamminaredmond 1964 (E. Praevirguliana N. Sp.; Foraminifera) From The Early Jurassic Of The Venetian Prealps (Calcari Grigi, Trento Platform, Northern Italy)". The Journal of Foraminiferal Research. 30 (2): 126–134. Bibcode:2000JForR..30..126F. doi:10.2113/0300126. ISSN   0096-1191.
  18. 1 2 3 4 5 6 7 8 9 10 Fraser, N.M.; Bottjer, D.J.; Fischer, A.G. (2004). "Dissecting "Lithiotis" Bivalves: Implications for the Early Jurassic Reef Eclipse". PALAIOS. 19 (1): 51–67. Bibcode:2004Palai..19...51F. doi:10.1669/0883-1351(2004)019<0051:DLBIFT>2.0.CO;2. S2CID   128632794 . Retrieved 3 January 2022.
  19. Fugagnoli, Anna; Bassi, Davide (2015). "Taxonomic And Biostratigraphic Reassessment Of Lituosepta Recoarensis Cati, 1959 (Foraminifera, Lituolacea)". The Journal of Foraminiferal Research. 45 (4): 402–412. Bibcode:2015JForR..45..402F. doi:10.2113/gsjfr.45.4.402. hdl: 11392/2337234 . ISSN   0096-1191.
  20. Fugagnoli, A.; Giannetti, A.; Rettori, R. (2003). "A new foraminiferal genus (Miliolina) from the Early Jurassic of the Southern Alps (Calcari Grigi Formation, Northeastern Italy)" (PDF). Revista Española de Micropaleontología. 35 (1): 43–50.
  21. Monaco, P.; Giannetti, A. (2001). "Stratigrafia tafonomica nel Giurassico inferiore dei Calcari Grigi della Piattaforma di Trento". Atti Ticinensi di Scienze della Terra. 42 (1): 175–209. Retrieved 3 January 2022.
  22. 1 2 3 Posenato, R. (2013). "Opisoma excavatum Boehm, a Lower Jurassic photosymbiotic alatoform-chambered bivalve". Lethaia. 46 (2): 424–437. Bibcode:2013Letha..46..424P. doi:10.1111/let.12020 . Retrieved 3 January 2022.
  23. Avanzini, M.; Broglio Loriga, C. (1996). "Chaetetid facies from the uppermost Calcari Grigi of the Southern Alps (Lower Jurassic, Gruppo del Pasubio, Trento, Italy)". Memorie di Scienze Geologiche Università di Padova. 48: 55–64. Retrieved 20 January 2024.
  24. 1 2 3 4 5 Geyer, O. F. (1977). "Die "Lithiotis-Kalke" im Bereich der unterjurassischen Tethys". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 153 (3): 304–340.
  25. 1 2 3 4 5 6 7 8 9 10 11 12 13 von Gloeckelsthurn, L. T. (1890). Zur Kenntnis der Fauna der" Grauen Kalke" der Südalpen. Hölder.
  26. 1 2 3 4 Vörös, A. (1993). "Jurassic microplate movements and brachiopod migrations in the western part of the Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 100 (1–2): 125–145. Bibcode:1993PPP...100..125V. doi:10.1016/0031-0182(93)90037-J . Retrieved 13 November 2023.
  27. 1 2 3 4 5 Bassi, Davide; Angiolini, Lucia; Nebelsick, James H.; Posenato, Renato (2024). "Success and demise of exceptionally preserved terebratulide brachiopod accumulations in a Jurassic (early Pliensbachian) tropical lagoonal setting (Southern Alps, Italy): Brachiopod response to environmental changes". Palaeogeography, Palaeoclimatology, Palaeoecology. 648: 112262. Bibcode:2024PPP...64812262B. doi: 10.1016/j.palaeo.2024.112262 . ISSN   0031-0182.
  28. 1 2 Franceschi, M.; Dal Corso, J.; Posenato, R.; Roghi, G.; Masetti, D.; Jenkyns, H.C. (2014). "Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 410 (4): 255–263. Bibcode:2014PPP...410..255F. doi:10.1016/j.palaeo.2014.05.025 . Retrieved 3 January 2022.
  29. 1 2 3 4 5 6 7 8 9 10 11 12 Lepsius, R. G. (1878). Das Westliche Süd-Tirol: geologisch dargestellt. Verlag von Wilhelm Hertz.
  30. 1 2 3 4 5 6 7 8 9 Bassi, D.; Boomer, I.; Fugagnoli, A.; Loriga, C.; Posenato, R.; Whatley, R.C. (1999). "Faunal assemblages and palaeoenvironment of shallow water black shales in the Tonezza area (Calcari Grigi, Early Jurassic, Southern Alps)" (PDF). Annali dell'Università di Ferrara, Sezione di Scienze della Terra. 8 (3): 1–16. Retrieved 3 January 2022.
  31. 1 2 3 4 5 6 7 8 9 10 11 12 Posenato, R.; Masetti, D. (2012). "Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (Southern Alps, Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 361 (2): 1–13. Bibcode:2012PPP...361....1P. doi:10.1016/j.palaeo.2012.07.001 . Retrieved 3 January 2022.
  32. 1 2 3 4 5 6 7 8 9 Posenato, R.; Avanzini, M. (2004). "Short note–Nota breve "Lithiotis" beds of the Rotzo Formation (Calcari Grigi Group, Lower Jurassic) from Albaredo (Rovereto, Trento)" (PDF). Acta Geol. 81 (6): 23–28. Retrieved 3 January 2022.
  33. 1 2 Posenato, R.; Bassi, D.; Avanzini, M. (2013). "Bivalve pavements from shallow-water black-shales in the Early Jurassic of northern Italy: A record of salinity-and oxygen-depleted environmental dynamics". Palaeogeography, Palaeoclimatology, Palaeoecology. 369 (2): 262–271. Bibcode:2013PPP...369..262P. doi:10.1016/j.palaeo.2012.10.032 . Retrieved 3 January 2022.
  34. 1 2 3 Negri, A. (1891). "Sopra alcuni fossili: raccolti nei Calcari grigi dei sette comuni". Boll. Soc. Geol. Ital. 10 (6): 309–331.
  35. 1 2 Posenato, R.; Crippa, G. (2023). "An insight into the systematics of Plicatostylidae (Bivalvia), with a description of Pachygervillia anguillaensis n. gen. n. sp. from the Lithiotis Facies (Lower Jurassic) of Italy". Riv. It. Paleontol. Strat. 129 (3): 551–572. Retrieved 13 November 2023.
  36. 1 2 3 Mietto, P. (1985). "Ammoniti nella Piattaforma liassica Veneta". Rivista Italiana di Paleontologia e Stratigrafia. 91 (1): 3–14. Retrieved 3 January 2022.
  37. Haas, O. (1913). "Die Fauna des mittleren Lias von Ballino im Sudtirol". Beitr. Paldont. Geol. Osterr. 26 (1): 1–161. Retrieved 3 January 2022.
  38. Sarti, C.; Ferrari, G. (1999). "The first record of an in situ ammonite from the upper part of the Calcari Grigi di Noriglio Formation of the Monte Baldo (Trentino, Northern Italy)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 213 (3): 313–334. doi:10.1127/njgpa/213/1999/313 . Retrieved 3 January 2022.
  39. 1 2 3 4 5 6 7 8 9 10 11 12 Gatto, R.; Monari, S. (2010). "Pliensbachian gastropods from Venetian Southern Alps (Italy) and their palaeobiogeographical significance". Palaeontology. 53 (4): 771–802. Bibcode:2010Palgy..53..771G. doi:10.1111/j.1475-4983.2010.00961.x. S2CID   140623279 . Retrieved 3 January 2022.
  40. 1 2 3 Vorlicek, Lucia (2022). "Analisi paleontologica di alcuni gasteropodi del Giurassico inferiore del Veneto". Dipartimento di Geoscienze-Universita Padova. 34 (1): 1–22. Retrieved 13 November 2023.
  41. 1 2 Borghi, E.; Bottazzi, A. (2020). "First record of the genus Polydiadema Lambert, 1888 (Echinoidea) in the Jurassic of Italy" (PDF). Studi Trentini di Scienze Naturali. 99 (4): 15–19. Retrieved 3 January 2022.
  42. 1 2 3 4 5 6 7 8 Garassino, A.; Monaco, M. (2000). "Burrows and body fossil of decapod custaceans i the Calcari Grigi, Lower Jurassic, Treno Platform (Italy)". Geobios. 34 (3): 291–301.
  43. 1 2 3 4 5 6 Monaco, P. (2000). "Decapod burrows (Thalassinoides, Ophiomorpha) and crustacean remains in the Calcari Grigi, lower Jurassic, Trento platform (Italy)". 1st Workshop on Mesozoic and Tertiary decapod crustaceans, Studi e Ricerche, Associazione Amici del Museo Civico "G.Zannato" Montecchio Maggiore (Vicenza), October 6–8, 2000. 1 (1): 55–57. Retrieved 3 January 2022.
  44. 1 2 3 4 5 6 7 8 9 10 11 Boomer, I.; Whatley, R.; Bassi, D.; Fugagnoli, A.; Loriga, C. (2001). "An Early Jurassic oligohaline ostracod assemblage within the marine carbonate platform sequence of the Venetian Prealps, NE Italy". Palaeogeography, Palaeoclimatology, Palaeoecology. 166 (3–4): 331–344. Bibcode:2001PPP...166..331B. doi:10.1016/S0031-0182(00)00216-9 . Retrieved 3 January 2022.
  45. Van Erve, A. W. (1981). "Lower Jurassic scolecodonts from the vicentinian Alps (northeastern Italy), representing the family Dorvilleidae Chamberlin, 1919". Review of Palaeobotany and Palynology. 34 (2): 225–235. Bibcode:1981RPaPa..34..225V. doi:10.1016/0034-6667(81)90040-3 . Retrieved 17 April 2023.
  46. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Monaco, P.; Giannetti, A. (2002). "Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy)". Facies. 47 (1): 57–82. Bibcode:2002Faci...47...57M. doi:10.1007/BF02667706. S2CID   129735856 . Retrieved 3 January 2022.
  47. 1 2 3 Bernardi, M.; Ferreti, P.; Petti, F.M.; Avanzini, M. (2009). "Asteriacites isp. from the Coste dell'Anglone dinosaur ichnosite (Valle del Sarca, Trentino, NW Italy)". Giornate di Paleontologia. 43 (1): 28–31.
  48. 1 2 3 4 5 6 Monaco, P.; Garassino, A. (2001). "Burrowing and carapace remains of crustacean decapods in the Calcari Grigi, Early Jurassic, Trento platform". Geobios. 34 (3): 291–301. doi:10.1016/S0016-6995(01)80077-2 . Retrieved 3 January 2022.
  49. 1 2 3 4 Franceschi, F.; Bernardi, M. (2021). "The higher ecological tiers of the Rotzo Formation: first clues on a forgotten vertebrate fauna". _PaleoDays 2021 - XXI Convegno della Società Paleontologica Italiana. 2 (1): 6–7. Retrieved 3 January 2022.
  50. 1 2 3 4 Franceschi, Fabio; Bernardi, Massimo (2020). "Vertebrate remains from the Rotzo Formation (Lower Jurassic, Trento Platform, Italy): preliminary note" (PDF). Fossilia - Reports in Palaeontology. 78 (6): 25–27. Retrieved 3 January 2022.
  51. 1 2 3 4 5 6 7 8 Petti, F. M.; Bernardi, M.; Todesco, R.; Avanzini, M. (2011). "Dinosaur footprints as ultimate evidence for a terrestrial environment in the late Sinemurian trento carbonate platform". PALAIOS. 26 (10): 601–606. Bibcode:2011Palai..26..601P. doi:10.2110/palo.2011.p11-003r. S2CID   128845481 . Retrieved 3 January 2022.
  52. 1 2 3 4 Avanzini, M. (1998). "Resti di vertebrati dal Giurassico inferiore della piattafor-ma di Trento (Italia settentrionale) Nota prelimiare". Studi Trentini diScienze Naturali. Acta Geologica. 73 (7): 75–80.
  53. Avanzini, M. (1998). "Resti di rettili continentali dal Giurassico inferiore della piattaforma di Trento (Italia settentrionale)". Studi Trentini di Scienze Naturali - Acta Geologica. 73 (4): 75–80.
  54. 1 2 3 4 5 6 7 Guidorroghi, R. (2006). "Lower Jurassic (Hettangian-Sinemurian) dinosaur track megasites, southern Alps, Northern Italy". The Triassic-Jurassic Terrestrial Transition. 37 (8): 207.
  55. 1 2 3 4 Petti, F.M.; Avanzini, M.; Antonelli, M; Bernardi, M.; Leonardi, G.; Manni, R.; Mietto, P.; Pignatti, J.; Piubelli, D.; Sacco, E.; Wagensommer, A. (2020). "Jurassic tetrapod tracks from Italy: a training ground for generations of researchers". Tetrapod Ichnology in Italy: The State of the Art. Journal of Mediterranean Earth Sciences. 12 (3): 137–165. Retrieved 3 January 2022.
  56. 1 2 Avanzini, M.; Petti, F. M. (2008). "Updating the dinosaur tracksites from the Lower Jurassic Calcari Grigi Group (Southern Alps, northern Italy)". Studi Trentini di Scienze Naturali, Acta Geologica. 83 (8): 289–301. Retrieved 3 January 2022.
  57. 1 2 3 4 Avanzini, M.; Leonardi, G.; Tomasoni, R.; Campolongo, M. (2001). "Enigmatic dinosaur trackways from the Lower Jurassic (Pliensbachian) of the Sarca Valley, northeast Italy". Ichnos. 8 (3–4): 235–242. Bibcode:2001Ichno...8..235A. doi:10.1080/10420940109380190. S2CID   128584482 . Retrieved 3 January 2022.
  58. Franceschi, M.; Martinelli, M.; Gislimberti, L.; Rizzi, A.; Massironi, M. (2015). "Integration of 3D modeling, aerial LiDAR and photogrammetry to study a synsedimentary structure in the Early Jurassic Calcari Grigi (Southern Alps, Italy)". European Journal of Remote Sensing. 48 (1): 527–539. Bibcode:2015EuJRS..48..527F. doi: 10.5721/EuJRS20154830 . S2CID   134429593.
  59. 1 2 3 4 5 Neri, M.; Papazzoni, C.A.; Kustatscher, E.; Roghi, G. (2015). "Paleoenvironmental data from the amber-bearing levels of the Rotzo formation (Pliensbachian, Lower Jurassic), Monti Lessini (Verona, Italy)". In XV Edizione delle "Giornate di Paleontologia", PaleoDays. 15 (2): 78–79. Retrieved 3 January 2022.
  60. 1 2 3 Neri, M.; Kustatscher, E.; Roghi, G.; Papazzoni, C.A. (2016). "Paleobotanical assemblage from the Lower Jurassic amber bearing levels from the Rotzo Formation, Monti Lessini (Venetian Prealps, Northern Italy)". In the Micropaleontological Society, 5th Silicofossil and Palynology Joint Meeting. 16 (2): 33.
  61. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Neri, M.; Roghi, G.; Ragazzi, E.; Papazzoni, C. A. (2017). "First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy)". Geobios. 50 (1): 49–63. Bibcode:2017Geobi..50...49N. doi:10.1016/j.geobios.2016.10.001 . Retrieved 3 January 2022.
  62. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Van Erve, A.W. (1977). "Palynological investigation in the Lower Jurassic of the Vicentinian Alps (Northeastern Italy)". Review of Palaeobotany and Palynology. 23 (6): 1–117. Bibcode:1977RPaPa..23....1V. doi:10.1016/0034-6667(77)90004-5 . Retrieved 3 January 2022.
  63. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Neri, M.; Kustatscher, E.; Roghi, G. (2018). "Megaspores from the Lower Jurassic (Pliensbachian) Rotzo Formation (Monti Lessini, northern Italy) and their paleoenvironmental implications". Palaeobiodiversity and Palaeoenvironments. 98 (1): 102–118. Bibcode:2018PdPe...98...97N. doi: 10.1007/s12549-017-0314-z . S2CID   133666705 . Retrieved 3 January 2022.
  64. Guy-Ohlson, D. (1988), "The use of dispersed palynomorphs referable to the form genus Chasmatosporites (Nilsson) Pocock and Jansonius, in Jurassic biostratigraphy" (PDF), Congreso Argentino de Paleontologia y Bioestratigrafia, 3 (1–2): 5–13, retrieved 9 April 2021
  65. Romano, Roberta; Barattolo, Filippo (2009). "Note on Sestrosphaera liasina (Pia, 1920) from the Lowermost Jurassic of Malga Mandrielle (type-locality, Southern Alps, Italy)". Geobios. 42 (1): 101–115. Bibcode:2009Geobi..42..101R. doi:10.1016/j.geobios.2008.07.005. ISSN   0016-6995.
  66. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 De Zigno, A. (1856–1868). "Flora fossilis formationis Oolithicae". Tipografia del Seminario di Padova. 1 (1): 1–426. Retrieved 3 January 2022.
  67. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Wesley, A. (1958). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 2". Mem. Ist. Geol. Min. Univ. Padova. 21 (1): 1–57.
  68. Scanu, G. G.; Kustatscher, E.; Pittau, P. (2012). "The Jurassic plant fossils of the Lovisato Collection: preliminary notes". Bollettino della Società Paleontologica Italiana. 51 (2): 71–84.
  69. 1 2 3 4 5 6 7 8 9 10 11 12 De Zigno, A. (1885). "Flora fossilis formationis oolithicae Volume 2". Padova, Tip. Del Seminario. 3 (2): 1–356. Retrieved 3 January 2022.
  70. 1 2 3 4 5 6 7 8 Bartiromo, A.; Barone Lumaga, M.R. (2009). "Taxonomical revision of the Collection of Jurassic plants from Roverè di Velo (Veneto, northern Italy) stored in the Palaeontological Museum of the University of Naples "Federico II"". Bollettino della Società Paleontologica Italiana. 48 (3): 1–13. Retrieved 3 January 2022.
  71. THÉVENARD, FRÉDÉRIC; BARALE, GEORGES; GUIGNARD, GAËTAN; DAVIERO-GOMEZ, VÉRONIQUE; GOMEZ, BERNARD; PHILIPPE, MARC; LABERT, NICOLAS (2005). "Reappraisal of the ill-defined Liassic pteridosperm Dichopteris using an ultrastructural approach". Botanical Journal of the Linnean Society. 149 (3): 313–332. doi:10.1111/j.1095-8339.2005.00439.x. ISSN   1095-8339.
  72. 1 2 3 4 Dalla Vecchia, F. M. (2000). "Macrovegetali terrestri nel Mesozoico italiano: un'ulteriore evidenza di frequenti emersioni". Natura Nascosta. 20: 18–35. Retrieved 7 July 2023.
  73. Kustatscher, E.; Roghi, G.; Giusberti, L. (2014). "La flora del Giurassico dell'italia settentrionale The Jurassic flora of northern Italy". La Storia delle Piante Fossili in Italia. Palaeobotany of Italy (Pp. 154-165). Museo di Scienze Naturali dell'Alto Adige.
  74. 1 2 3 4 5 6 Wesley, A. (1956). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 1". Mem. Ist. Geol. Min. Univ. Padova. 19 (3): 1–69.
  75. Krassilov, V. A. (1978). "Araucariaceae as indicators of climate and paleolatitudes". Review of Palaeobotany and Palynology. 26 (1–4): 113–124. Bibcode:1978RPaPa..26..113K. doi:10.1016/0034-6667(78)90008-8.
  76. van Konijnenburg-van Cittert, J.H.A.; Schmeißner, S.; D., G.; Kustatscher, E.; Pott, C. (2024-03-13). "Plant macrofossils from the Rhaetian of Einberg near Coburg (Bavaria, Germany). Part 3. Conifers, incertae sedis and general discussion". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (3): 251–282. doi:10.1127/njgpa/2023/1182. ISSN   0077-7749.

Related Research Articles

<i>Saltriovenator</i> Extinct genus of dinosaurs

Saltriovenator is a genus of ceratosaurian dinosaur that lived during the Sinemurian stage of the Early Jurassic in what is now Italy. The type and only species is Saltriovenator zanellai; in the past, the species had been known under the informal name "saltriosaur". Although a full skeleton has not yet been discovered, Saltriovenator is thought to have been a large, bipedal carnivore similar to Ceratosaurus.

<span class="mw-page-title-main">Carnian</span> First age of the Late Triassic epoch

The Carnian is the lowermost stage of the Upper Triassic Series. It lasted from 237 to 227 million years ago (Ma). The Carnian is preceded by the Ladinian and is followed by the Norian. Its boundaries are not characterized by major extinctions or biotic turnovers, but a climatic event occurred during the Carnian and seems to be associated with important extinctions or biotic radiations. Another extinction occurred at the Carnian-Norian boundary, ending the Carnian age.

<span class="mw-page-title-main">Ladinian</span> Age in the Middle Triassic

The Ladinian is a stage and age in the Middle Triassic series or epoch. It spans the time between 242 Ma and ~237 Ma. The Ladinian was preceded by the Anisian and succeeded by the Carnian.

The Ziliujing Formation is a geological formation in China, It is Early Jurassic in age. It is part of the stratigraphy of the Sichuan Basin. The dinosaur Gongxianosaurus and indeterminate theropod material are known from the Dongyuemiao Member of the formation, as well as dinosaur footprints, Zizhongosaurus and indeterminate prosauropods from the Da'anzhai Member. The basal sauropod Sanpasaurus is known from the Maanshan Member. An possible unnamed stegosaur and the pliosauroid plesiosaur Sinopliosaurus are also known from this formation but they were found an indeterminate member. An unnamed teleosaurid known from a complete skull has also been found in the formation, pending a formal description. The deposition environment during the Da'anzhai Member in the lower Toarcian is thought to have been that of a giant freshwater lake encompassing the whole of the Sichuan basin, around 3 times larger than Lake Superior, coeval with the Toarcian Oceanic Anoxic Event around 183 Ma. The Sinemurian-Pliensbachian boundary event has been recorded on the top of the Dongyuemiao Member, while lower parts of this member are of Earliest Sinemurian age.

<span class="mw-page-title-main">Saltrio Formation</span> Geological formation in Italy

The Saltrio Formation is a geological formation in Italy. It dates back to the Early Sinemurian, and would have represented a pelagic or near-epicontinental environment, judging by the presence of marine fauna such as the nautiloid Cenoceras. The Fossils of the Formation were described on the late 1880s and revised on 1960s, finding first marine biota, such as Crinoids, Bivalves and other fauna related to Epicontinental basin deposits.

<span class="mw-page-title-main">Posidonia Shale</span> Early Jurassic geological formation of south-western Germany

The Posidonia Shale geologically known as the Sachrang Formation, is an Early Jurassic geological formation of southwestern and northeast Germany, northern Switzerland, northwestern Austria, southern Luxembourg and the Netherlands, including exceptionally well-preserved complete skeletons of fossil marine fish and reptiles.

<i>Gastrochaenolites</i> Trace fossil

Gastrochaenolites is a trace fossil formed as a clavate (club-shaped) boring in a hard substrate such as a shell, rock or carbonate hardground. The aperture of the boring is narrower than the main chamber and may be circular, oval, or dumb-bell shaped. Gastrochaenolites is most commonly attributed to bioeroding bivalves such as Lithophaga and Gastrochaena. The fossil ranges from the Ordovician to the Recent. The first Lower Jurassic Gastrochaenolites ichnospecies is Gastrochaenolites messisbugi Bassi, Posenato, Nebelsick, 2017. This is the first record of boreholes and their producers in one of the larger bivalves of the globally occurring Lithiotis fauna which is a unique facies in the Lower Jurassic Tethys and Panthalassa.

<span class="mw-page-title-main">Aganane Formation</span> Geologic formation in Azilal Province, central Morocco

The Aganane Formation is a Pliensbachian geologic formation in the Azilal, Béni-Mellal, Ouarzazate, Tinerhir and Errachidia provinces, central Morocco, being the remnant of a local massive Carbonate platform, and known mostly for its rich tracksites including footprints of thyreophoran, sauropod and theropod dinosaurs. It may also include the fossiliferous levels of the Calcaires du Bou Dahar, if true, it would be one of the richest Early Jurassic formations in the entire tethys area.

<span class="mw-page-title-main">Hasle Formation</span> Geologic formation on the island on Bornholm, Denmark

The Hasle Formation is a geologic formation on the island on Bornholm, Denmark. It is of early to late Pliensbachian age. Vertebrate fossils have been uncovered from this formation. The type section of the formation is found at the south of the costal Hasle Town, and it is composed by rusty yellow to brownish siltstones and very fine-grained sandstones. The southernmost arch, Hvjdoddebuen, is not as fossil-bearing as the type unit in Hasle. The formation can be separated in two different petrographic types: type 1 sandstones are friable with layers and lenses of concretionary siderite and type 2 well-cemented sandstones. Both types where deposited in a relatively high-energy marine environment with a diagenetic pattern that demonstrates a close relation to various phases of subsidence and uplift in the tectonically unstable Fennoscandian Border Zone. Most of its deposition happened on a storm-dominated shoreface, with the exposed parts deposited in an open marine shelf within 1–2 km distance from the fault-controlled coastlines. However, recent works have recovered terrestrial fauna from it, including a footprint, suggesting easterly winds and low tide could have exposed the inner parts of the upper shoreface, and create long-lasting Floodplain-type environments. Field works since 1984 have shown a mostly hummocky cross-stratified deposition, with great complexity of the sediments that suggests very complicated and variable flow conditions, with Megaripples derived from storm events. Storms were frequent and the coastline faced a wide epeiric sea with a fetch towards the west of possibly 1000 kilometers. The Jamesoni–Ibex Chronozone in the Central European Basin represents a clear sea Transgression, due to the appearance of ammonites from Thuringia and southern Lower Saxony, showing a full marine ingression towards the west. This rise in the sea level is also measured in the north, as is proven by the presence of Uptonia jamesoni in Kurremölla and Beaniceras centaurus plus Phricodoceras taylori on the Hasle Formation. The whole Hasle Sandstones are a result of this rise in the sea level, where the marine sediments cover the deltaic layers of the Rønne Formation. The rise in the sea level is observed on palynology, as on the Hasle Formation Nannoceratopsis senex (Dinoflajellate) and Mendicodinium reticulaturn appear, indicating a transition from paralic and restricted marine to fully marine.

<span class="mw-page-title-main">Charmouth Mudstone Formation</span> Geological formation in England

The Charmouth Mudstone Formation is a geological formation in England, dating to the Early Jurassic (Sinemurian–Pliensbachian). It forms part of the lower Lias Group. It is most prominently exposed at its type locality in cliff section between Lyme Regis and Charmouth but onshore it extends northwards to Market Weighton, Yorkshire, and in the subsurface of the East Midlands Shelf and Wessex Basin. The formation is notable for its fossils, including those of ammonites and marine reptiles and rare dinosaur remains. The formation played a prominent role in the history of early paleontology, with its Lyme Regis-Charmouth exposure being frequented by fossil collectors including Mary Anning.

The Evergreen Formation is a Pliensbachian to Toarcian geologic formation of the Surat Basin in New South Wales and Queensland, eastern Australia. Traditionally it has been considered to be a unit whose age has been calculated in between the Pliensbachian and Toarcian stages of the Early Jurassic, with some layers suggested to reach the Aalenian stage of the Middle Jurassic, yet modern data has found that an Early Pliensbachian to Latest Toarcian age is more possible. The formation was named due to the "Evergreen Shales", defined with a lower unit, the Boxvale Sandstone, and a partially coeval, partially younger upper unit, the Westgrove Ironstone Member. This unit overlies the Hettangian-Sinemurian Precipice Sandstone, as well several informal units such as the Nogo Beds, and Narayen beds, as well Torsdale Volcanics. This unit likely was deposited in a massive lacustrine body with possible marine environment influences.

The Calcare di Sogno is a geological formation in Italy, dated to roughly between 182-169 million years ago and covering the Lower Toarcian-Late Bajocian stagess of the Jurassic Period in the Mesozoic Era. Thallatosuchian remains are known from the formation, as well fishes and other taxa.

The Budoš Limestone is a geological formation in Montenegro and maybe Albania, dating to 192-182 million years ago, and covering the Pliensbachian-Toarcian stage of the Jurassic Period. It is located within the High karst zone, and represents a unique terrestrial setting with abundant plant material, one of the few know from the Toarcian of Europe. It is the regional equivalent to the Toarcian-Aalenian units of Spain such as the Turmiel Formation and the El Pedregal Formation, the Sinemurian Coimbra Formation in Portugal, units like the Aganane Formation or the Tafraout Group of Morocco and others from the Mediterranean such as the Posidonia Beds of Greece and the Marne di Monte Serrone of Italy. In the Adriatic section, this unit is an equivalent of the Calcare di Sogno of north Italy, as well represents almost the same type of ecosystem recovered in the older (Pliensbachian) Rotzo Formation of the Venetian region and the Podpeč Limestone of Slovenia, know also for its rich floral record.

<span class="mw-page-title-main">Sorthat Formation</span> Geologic formation in Bornholm, Denmark

The Sorthat Formation is a geologic formation on the island of Bornholm, Denmark and in the Rønne Graben in the Baltic Sea. It is of Latest Pliensbachian to Late Toarcian age. Plant fossils have been recovered from the formation, along with several traces of invertebrate animals. The Sorthat Formation is overlain by fluvial to lacustrine gravels, along with sands, clay and in some places coal beds that are part of the Aalenian-Bathonian Bagå Formation. Until 2003, the Sorthat Formation was included as the lowermost part of the Bagå Formation, recovering the latest Pliensbachian to lower Aalenian boundary. The Sorthat strata reflect a mostly marginally deltaic to marine unit. Large streams fluctuated to the east, where a large river system was established at the start of the Toarcian. In the northwest, local volcanism that started in the lower Pliensbachian extended along the North Sea, mostly from southern Sweden. At this time, the Central Skåne Volcanic Province and the Egersund Basin expelled most of their material, with influences on the local tectonics. The Egersund Basin has abundant fresh porphyritic nephelinite lavas and dykes of lower Jurassic age, with a composition nearly identical to those found in the clay pits. That indicates the transport of strata from the continental margin by large fluvial channels of the Sorthat and the connected Röddinge Formation that ended in the sea deposits of the Ciechocinek Formation green series.

<span class="mw-page-title-main">Moltrasio Formation</span> Geological formation in Italy and Switzerland

The Moltrasio Formation also known as the Lombardische Kieselkalk Formation is a geological formation in Italy and Switzerland. This Formation mostly developed in the Lower or Middle Sinemurian stage of the Lower Jurassic, where on the Lombardian basin tectonic activity modified the current marine and terrestrial habitats. Here it developed a series of marine-related depositional settings, represented by an outcrop of 550–600 m of grey Calcarenites and Calcilutites with chert lenses and marly interbeds, that recovers the Sedrina, Moltrasio and Domaro Formations. This was mostly due to the post-Triassic crisis, that was linked locally to tectonics. The Moltrasio Formation is considered a continuation of the Sedrina Limestone and the Hettangian Albenza Formation, and was probably a shallow water succession, developed on the passive margin of the westernmost Southern Alps. It is known due to the exquisite preservation observed on the Outcrop in Osteno, where several kinds of marine biota have been recovered.

The Borucice Formation, also known in older literature as the Borucice Series, is a Jurassic geologic formation that extends to nearly whole of Poland. This formation represents the last sequence of the lower Jurassic in Poland, recovering the depositional sequences IX and X, and may even recover lowermost parts of the first Middle Jurassic sequence. It represents mostly a series of alluvial depositional systems with subordinate intervals of deltaic deposits. Dinosaur Tracks are among the fossils that have been recovered from the formation. Most of the sediments of the Polish realm come from deltaic, fluvial and marine deposits. It mainly consists of light whitish-grey, fine grained sandstones interbedded by clay containing plant detritus and minute fragments of coal. It also has dark grey mudstones with marine lamellibranches and an Upper Lias microfauna. Its main equivalents are the Jurensismergel Formation of Germany, upper part of the Rya Formation and the uppermost Sorthat Formation (Bornholm). There are also coeval abandoned informal units in Poland: Upper Lisiec beds, or the Kamień Beds.

<span class="mw-page-title-main">Mizur Formation</span>

The Mizur Formation is a geological formation that outcrops in North Ossetia–Alania in the North Caucasus, representing a series of marginal marine to coastal layers with terrestrial influence. It is of Late Pliensbachian age. It is notable as the only major unit with preserved dinosaur footprints of various orders not yet ascribed to any concrete ichnogenus.

The Podpeč Limestone is a geological formation of Pliensbachian-Earliest Toarcian age in southern and southwestern Slovenia, including South-West of Ljubljana or nearby Mount Krim, with other isolated locations such as in the Julian Alps. This unit represents the major depositional record of the Adriatic Carbonate platform, being known for its shallow marine-lagoon deposits and its bivalve biota, that are abundant enough to give the vulgar name to this unit sometimes in literature as the "Lithiotis Horizon". Is a regional ecological equivalent to the Veneto Rotzo Formation, the Montenegro Budoš Limestone or the Moroccan Aganane Formation. Its regional equivalents include the hemipelagic Krikov Formation at the Tolmin basin.

<span class="mw-page-title-main">Calcaires du Bou Dahar</span>

The Calcaires du Bou Dahar is a geological formation or a sequence of formations of Late Sinemurian to Pliensbachian-Toarcian boundary age in Bni Tadjite, the Central High Atlas, Morocco. This unit represents an excepcional record of an evolving reef complex, platform slopes and a emerged shoal developed inside a carbonate platform, recording the evolutionary cycles of this environment with notorious precision, also yielding what is considered one of the greatest/most diverse marine biotas of the entire Jurassic Tethys Ocean. The Bou Dahar carbonate platform shoal stands prominently and structurally above surrounding plains, spanning 35-40 km in length and 4-15 km in width, with a relief of 100-450 m. This carbonate formation originated on metamorphosed Silurian to Ordovician siliciclastic rocks and tholeiitic volcanic layers tied to Central Atlantic Magmatic Province basalts, forming a corridor oriented WSW to ENE. Surrounding alluvial plains expose green marls, shales, and dark lime-mudstones representing basinal deposits contemporaneous or subsequent to the platform. It has been considered to be a sequence of different coeval inner geological formations, including the Foum Zidet Formation, the Aganane Formation and Ouchbis Formation, but is usually interpreted as a single major unit due to it´s unique preservation.