Eltro information rate changer

Last updated

The Eltro information rate changer was an analog recording tool for changing pitch without changing speed and vice versa. Patents for the device date from the 1920s. [1] The Eltro was the first machine capable of changing audio pitch (frequency) and speed (time) independently of each other.

The Eltro was developed in Germany by an engineer, Anton Marian Springer (1909–1964). [2] It was an accessory to a reel-to-reel tape recorder. Recorders compatible with the Eltro were introduced in the 1940s. The Eltro was first publicly demonstrated in 1953. By the mid 1960s, it was in many recording studios.

The Eltro was often used to adjust the timing of radio commercials to fit them exactly to their time-limits. Using the Eltro, a recording engineer could control the length of a commercial without changing the pitch or adding or removing silence. It could also be used for a variety of musical effects.

Most audio tape recorders use fixed heads, which remain stationary while the tape moves past. However, the Eltro used rotating heads. It does not record sound and is used for audio playback only. Rotating heads were first devised by Ampex in the 1950s, for analog videotape recording. The altered sound from playback on the Eltro was then usually copied by another reel-to-reel tape recorder.

Wendy Carlos, a musician and recording engineer, used an Eltro Mark II machine at Gotham Recording Studios in New York City in the 1960s. [3] The Beach Boys used it to for high-pitched vocal effects on the song "She's Goin' Bald", recorded in Los Angeles in 1967.

The Eltro is probably best known from use in the 1968 film 2001: A Space Odyssey . [1] [4] The effect of the Eltro was applied to the voice of Douglas Rain, who played the part of the HAL 9000 computer. In the film, both the pitch and speed of HAL's voice gradually drop at different rates while the computer is deactivated. The final effect was created by passing the actor's voice through the Eltro twice.

The Eltro worked with mono recordings and processed only one audio channel at a time. It fell out of common use during the 1970s. Later devices were developed to shift pitch by other electronic means. Many of these had stereo capability. With the widespread availability of digital recording in the 1980s, it got easier to control pitch and speed with software while avoiding expensive, special analog tools. Digital audio workstation software can now achieve the same effects more easily and at lower cost.

See also

Related Research Articles

<span class="mw-page-title-main">Digital audio</span> Technology that records, stores, and reproduces sound

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

<span class="mw-page-title-main">Digital Audio Tape</span> Digital audio cassette format developed by Sony

Digital Audio Tape is a signal recording and playback medium developed by Sony and introduced in 1987. In appearance it is similar to a Compact Cassette, using 3.81 mm / 0.15" magnetic tape enclosed in a protective shell, but is roughly half the size at 73 mm × 54 mm × 10.5 mm. The recording is digital rather than analog. DAT can record at sampling rates equal to, as well as higher and lower than a CD at 16 bits quantization. If a comparable digital source is copied without returning to the analogue domain, then the DAT will produce an exact clone, unlike other digital media such as Digital Compact Cassette or non-Hi-MD MiniDisc, both of which use a lossy data-reduction system.

<span class="mw-page-title-main">Tape recorder</span> Machine for recording sound

An audio tape recorder, also known as a tape deck, tape player or tape machine or simply a tape recorder, is a sound recording and reproduction device that records and plays back sounds usually using magnetic tape for storage. In its present-day form, it records a fluctuating signal by moving the tape across a tape head that polarizes the magnetic domains in the tape in proportion to the audio signal. Tape-recording devices include the reel-to-reel tape deck and the cassette deck, which uses a cassette for storage.

A hard disk recorder (HDR) is a system that uses a high-capacity hard disk to record digital audio or digital video. Hard disk recording systems represent an alternative to reel-to-reel audio tape recording and video tape recorders, and provide non-linear editing capabilities unavailable using tape recorders. Audio HDR systems, which can be standalone or computer-based, are typically combined with provisions for digital mixing and processing of the audio signal to produce a digital audio workstation (DAW).

<span class="mw-page-title-main">Ampex</span> American company that pioneered the use of videotape

Ampex Data Systems Corporation is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor. The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. Ampex operates as Ampex Data Systems Corporation, a subsidiary of Delta Information Systems, and consists of two business units. The Silicon Valley unit, known internally as Ampex Data Systems (ADS), manufactures digital data storage systems capable of functioning in harsh environments. The Colorado Springs, Colorado, unit, referred to as Ampex Intelligent Systems (AIS), serves as a laboratory and hub for the company's line of industrial control systems, cyber security products and services and its artificial intelligence/machine learning technology.

<span class="mw-page-title-main">Mastering (audio)</span> Form of audio post-production

Mastering, a form of audio post production, is the process of preparing and transferring recorded audio from a source containing the final mix to a data storage device, the source from which all copies will be produced. In recent years, digital masters have become usual, although analog masters—such as audio tapes—are still being used by the manufacturing industry, particularly by a few engineers who specialize in analog mastering.

<span class="mw-page-title-main">Multitrack recording</span> Separate recording of multiple sound sources to create a cohesive whole

Multitrack recording (MTR), also known as multitracking, is a method of sound recording developed in 1955 that allows for the separate recording of multiple sound sources or of sound sources recorded at different times to create a cohesive whole. Multitracking became possible in the mid-1950s when the idea of simultaneously recording different audio channels to separate discrete tracks on the same reel-to-reel tape was developed. A track was simply a different channel recorded to its own discrete area on the tape whereby their relative sequence of recorded events would be preserved, and playback would be simultaneous or synchronized.

Flanging is an audio effect produced by mixing two identical signals together, one signal delayed by a small and (usually) gradually changing period, usually smaller than 20 milliseconds. This produces a swept comb filter effect: peaks and notches are produced in the resulting frequency spectrum, related to each other in a linear harmonic series. Varying the time delay causes these to sweep up and down the frequency spectrum. A flanger is an effects unit that creates this effect.

<span class="mw-page-title-main">Pitch control</span> Control on an audio device

A variable speed pitch control is a control on an audio device such as a turntable, tape recorder, or CD player that allows the operator to deviate from a standard speed, resulting in adjustments in pitch. The latter term "vari-speed" is more commonly used for tape decks, particularly in the UK. Analog pitch controls vary the voltage being used by the playback device; digital controls use digital signal processing to change the playback speed or pitch. A typical DJ deck allows the pitch to be increased or reduced by up to 8%, which is achieved by increasing or reducing the speed at which the platter rotates.

<span class="mw-page-title-main">Reel-to-reel audio tape recording</span> Audio recording using magnetic tape spooled on open reels

Reel-to-reel audio tape recording, also called open-reel recording, is magnetic tape audio recording in which the recording tape is spooled between reels. To prepare for use, the supply reel containing the tape is placed on a spindle or hub. The end of the tape is manually pulled from the reel, threaded through mechanical guides and over a tape head assembly, and attached by friction to the hub of the second, initially empty takeup reel. Reel-to-reel systems use tape that is 1412, 1, or 2 inches wide, which normally moves at 3+347+12, 15 or 30 inches per second. Domestic consumer machines almost always used 14 inch (6.35 mm) or narrower tape and many offered slower speeds such as 1+78 inches per second (4.762 cm/s). All standard tape speeds are derived as a binary submultiple of 30 inches per second.

<span class="mw-page-title-main">Video tape recorder</span> Tape recorder designed to record and play back video and audio material on magnetic tape

A video tape recorder (VTR) is a tape recorder designed to record and playback video and audio material from magnetic tape. The early VTRs were open-reel devices that record on individual reels of 2-inch-wide (5.08 cm) tape. They were used in television studios, serving as a replacement for motion picture film stock and making recording for television applications cheaper and quicker. Beginning in 1963, videotape machines made instant replay during televised sporting events possible. Improved formats, in which the tape was contained inside a videocassette, were introduced around 1969; the machines which play them are called videocassette recorders.

<span class="mw-page-title-main">Digital audio workstation</span> Electronic device or application software used for recording, editing and producing audio files

A digital audio workstation is an electronic device or application software used for recording, editing and producing audio files. DAWs come in a wide variety of configurations from a single software program on a laptop, to an integrated stand-alone unit, all the way to a highly complex configuration of numerous components controlled by a central computer. Regardless of configuration, modern DAWs have a central interface that allows the user to alter and mix multiple recordings and tracks into a final produced piece.

Automatic double-tracking or artificial double-tracking (ADT) is an analogue recording technique designed to enhance the sound of voices or instruments during the mixing process. It uses tape delay to create a delayed copy of an audio signal which is then played back at slightly varying speed controlled by an oscillator and combined with the original. The effect is intended to simulate the sound of the natural doubling of voices or instruments achieved by double tracking. The technique was developed in 1966 by engineers at Abbey Road Studios in London at the request of the Beatles.

The Digital Audio Stationary Head or DASH standard is a reel-to-reel, digital audio tape format introduced by Sony in early 1982 for high-quality multitrack studio recording and mastering, as an alternative to analog recording methods. DASH is capable of recording two channels of audio on a quarter-inch tape, and 24 or 48 tracks on 12-inch-wide (13 mm) tape on open reels of up to 14 inches. The data is recorded on the tape linearly, with a stationary recording head, as opposed to the DAT format, where data is recorded helically with a rotating head, in the same manner as a VCR. The audio data is encoded as linear PCM and boasts strong cyclic redundancy check (CRC) error correction, allowing the tape to be physically edited with a razor blade as analog tape would, e.g. by cutting and splicing, and played back with no loss of signal. In a two-track DASH recorder, the digital data is recorded onto the tape across nine data tracks: eight for the digital audio data and one for the CRC data; there is also provision for two linear analog cue tracks and one additional linear analog track dedicated to recording time code.

<span class="mw-page-title-main">Type B videotape</span> Broadcast magnetic tape-based videotape format used in Europe

1-inch Type B Helical Scan or SMPTE B is a reel-to-reel analog recording video tape format developed by the Bosch Fernseh division of Bosch in Germany in 1976. The magnetic tape format became the broadcasting standard in continental Europe, but adoption was limited in the United States and United Kingdom, where the Type C videotape format met with greater success.

<span class="mw-page-title-main">Sound recording and reproduction</span> Recording of sound and playing it back

Sound recording and reproduction is the electrical, mechanical, electronic, or digital inscription and re-creation of sound waves, such as spoken voice, singing, instrumental music, or sound effects. The two main classes of sound recording technology are analog recording and digital recording.

<span class="mw-page-title-main">Pitch shifting</span> Audio processing technique that changes the original pitch of a sound

Pitch shifting is a sound recording technique in which the original pitch of a sound is raised or lowered. Effects units that raise or lower pitch by a pre-designated musical interval (transposition) are known as pitch shifters.

The history of sound recording - which has progressed in waves, driven by the invention and commercial introduction of new technologies — can be roughly divided into four main periods:

<span class="mw-page-title-main">Delay (audio effect)</span> Echo-like effect

Delay is an audio signal processing technique that records an input signal to a storage medium and then plays it back after a period of time. When the delayed playback is mixed with the live audio, it creates an echo-like effect, whereby the original audio is heard followed by the delayed audio. The delayed signal may be played back multiple times, or fed back into the recording, to create the sound of a repeating, decaying echo.

<span class="mw-page-title-main">History of multitrack recording</span>

Multitrack recording of sound is the process in which sound and other electro-acoustic signals are captured on a recording medium such as magnetic tape, which is divided into two or more audio tracks that run parallel with each other. Because they are carried on the same medium, the tracks stay in perfect synchronization, while allowing multiple sound sources to be recorded at different times.

References

  1. 1 2 Langford, Simon (2013). Digital Audio Editing: Correcting and Enhancing Audio in Pro Tools, Logic Pro, Cubase, and Studio One. CRC Press. p. 239. ISBN   978-1-134-11130-5.
  2. Voigtschild, Fabian; Sterne, Jonathan; Mills, Mara (2018). ""Anton Springer and the Time and Pitch Regulator". Sound & Science: Digital Histories (Max Planck Institute for the History of Science)". Max-Planck-Gesellschaft.
  3. Carlos, Wendy (2008). "Vintage Technologies: The Eltro and the Voice of HAL. The Eltro Mark II "Information Rate Changer"". Serendip LLC.
  4. Krapp, Peter (2011). Noise Channels: Glitch and Error in Digital Culture. University of Minnesota Press. p. 65. ISBN   978-0-8166-7624-8.