This article needs to be updated. The reason given is: needs to cover more accurately the fall-off in availability.(September 2022) |
The Four Thirds System is a standard created by Olympus and Eastman Kodak for digital single-lens reflex camera (DSLR) design and development. [1] Four Thirds refers to both the size of the image sensor (4/3") as well as the aspect ratio (4:3). The Olympus E-1 was the first Four Thirds DSLR, announced and released in 2003. In 2008, Olympus and Panasonic began publicizing the Micro Four Thirds system, a mirrorless camera system which used the same sensor size; by eliminating the reflex mirror, the Micro Four Thirds cameras were significantly smaller than the Four Thirds cameras. The first Micro Four Thirds cameras were released in 2009 and the final Four Thirds cameras were released in 2010; by that time, approximately 15 Four Thirds camera models had been released by Olympus and Panasonic in total. The Four Thirds system was quietly discontinued in 2017, six years after the final cameras were released.
The system provides a standard that permits interoperability of digital cameras and lenses made by different manufacturers. Proponents describe it as an open standard, but companies may use it only under a non-disclosure agreement. [2]
Unlike older single-lens reflex (SLR) systems, Four Thirds was designed from the start for digital cameras. Many lenses are extensively computerised, to the point that Olympus offers firmware updates for many of them. Lens design has been tailored to the requirements of digital sensors, most notably through telecentric designs.
The image sensor format, between those of larger SLRs using "full-frame" and APS-C sensors, and smaller point-and-shoot compact digital cameras, yields intermediate levels of cost, performance, and convenience. The size of the sensor is smaller than most DSLRs and this implies that lenses, especially telephoto lenses, can be smaller. For example, a Four Thirds lens with a 300 mm focal length would cover about the same angle of view as a 600 mm focal length lens for the 35 mm film standard, and is correspondingly more compact. Thus, the Four Thirds System has crop factor (aka focal length multiplier) of about 2, and while this enables longer focal length for greater magnification, it does not necessarily aid the manufacture of wide angle lenses.
Kodak and Olympus announced in February 2001 they would share digital camera technologies; Olympus committed to purchase high-resolution charge-coupled device (CCD) sensors which would be jointly developed by the two companies and manufactured by Kodak. [3] A few months later, an internal Kodak presentation revealed that Olympus was developing a DSLR using Kodak's KAF-C5100E 5.1 megapixel 4/3" sensor, with a tentative schedule to announce the camera at the 2002 Photo Marketing Association exposition; [4] Olympus confirmed they were developing a "concept camera" with that sensor size. [5]
The Four Thirds System was announced jointly by Olympus and Kodak at photokina in September 2002. [6] The first camera was the Olympus E-1, announced on June 24, 2003, and aimed at the professional market, with shipments to commence in September. [7] In February 2004, Olympus announced that Panasonic, Sanyo, and Sigma Corporation had joined the consortium. [8] The second Four Thirds DSLR, the Olympus E-300, was introduced that year, without the typical protrusion on the top deck, as the designers had chosen to use a "porro finder" which had four mirrors instead of a standard pentaprism, similar to the design of the viewfinder used in the Olympus Pen F half-frame film SLR. [9]
In 2006, Olympus and Panasonic announced they had collaborated on the design of a new sensor, branded Live MOS, using a body design similar to that of the E-300; the result was three similar cameras, sold as the Olympus E-330, Panasonic DMC-L1, and Leica Digilux 3. [10] Nearly all of the successive Four Thirds camera models would use sensors from Panasonic, with the sole exception of the Olympus E-400 (2006), which was equipped with a CCD but sold only in Europe. [11]
In August 2008, Olympus and Panasonic introduced a new format, Micro Four Thirds.
The new system uses the same sensor, but removes the mirror box from the camera design. A live preview is shown on either the camera's main liquid-crystal display or via an electronic viewfinder, as in digital compact cameras. Autofocus may be accomplished via a contrast detection process using the main imager, again similar to digital compact cameras. Some Olympus and Panasonic manufactured camera bodies also feature phase detection auto focus built into the sensor. The goal of the new system was to allow for even smaller cameras, competing directly with higher-end point-and-shoot compact digital cameras and DSLRs. The smaller flange focal distance allows for more compact normal and wide angle lenses. It also facilitates the use, with an adapter, of lenses based on other mounting systems, including many manual focus lenses from the seventies and eighties.
In particular, Four Thirds lenses can be used on Micro Four Thirds bodies with an adapter; however, "all of the functions of the Micro Four Thirds System may not always be available." [12]
With the emphasis shifted to the Micro Four Thirds system, member companies began discontinuing manufacturing and support for Four Thirds system products. The final Four Thirds camera, the Olympus E-5, was released in 2010. [13] In 2013, Olympus released the Olympus E-M1, which is a Micro Four Thirds camera with enhanced support for legacy Four Thirds lenses using on-chip phase detection autofocus. [14] Olympus discontinued production of the Zuiko Digital lenses for Four Thirds in 2017. [15]
The standard for the lens mount is described in US Patent 6,910,814. [16]
The name of the system stems from the size of the image sensor used in the cameras, which is commonly referred to as a 4/3" type or 4/3 type sensor. The common inch-based sizing system is derived from vacuum image-sensing video camera tubes, which are now obsolete. The imaging area of a Four Thirds sensor is equal to that of a video camera tube of 4/3 inch diameter. [17]
The usual size of the sensor is 18 mm × 13.5 mm (22.5 mm diagonal), with an imaging area of 17.3 mm × 13.0 mm, giving a diagonal of 21.64 mm. [17] [18] The sensor's area is about 30–40% smaller than APS-C sensors used in most other DSLRs, but still around 9 times larger than the 1/2.5" sensors typically used in compact digital cameras. Incidentally, the imaging area of a Four Thirds sensor is almost identical to that of 110 film.
The emphasis on the 4:3 image aspect ratio sets Four Thirds apart from other DSLR systems, which usually adhere to the 3:2 aspect ratio of the traditional 35mm format. However, the standard only specifies the sensor diagonal, thus Four Thirds cameras using the standard 3:2 aspect ratio would be possible; [19] notably newer Panasonic Micro Four Thirds models even offer shooting at multiple aspect ratios while maintaining the same image diagonal. For instance, the Panasonic GH1 uses a multi-aspect sensor designed to maximize use of the image circle at 4:3, 3:2, and 16:9; each ratio having a diagonal of 22.5 mm. [20]
Sensor aspect ratio influences lens design. For example, many lenses designed by Olympus for the Four Thirds System contain internal rectangular baffles or permanently mounted "petal" lens hoods that optimise their operation for the 4:3 aspect ratio.[ citation needed ]
In an interview John Knaur, a Senior Product Manager at Olympus, stated that "The FourThirds refers to both the size of the imager and the aspect ratio of the sensor". [21] He also pointed out the similarities between 4:3 and the standard printing size of 8×10 as well as medium format 6×4.5 and 6×7 cameras, thus helping explain Olympus' rationale on choosing 4:3 rather than 3:2.
As of the 2006 Photo Marketing Association Annual Convention and Trade Show, the Four Thirds consortium consisted of the following companies:
This does not imply a commitment to end user products by each company. Historically, only Leica, Olympus, and Panasonic have produced bodies. Olympus and Leica/Panasonic have made dedicated Four Thirds lenses, and Sigma makes adapted versions of their "DC" lenses for APS-C format DSLRs. Kodak once sold sensors to Olympus for use in their Four Thirds bodies, but the newer Olympus Four Thirds cameras used Panasonic sensors.
The majority of Four Thirds System cameras and Four Thirds lenses are made by Olympus. Many Four Thirds cameras use "sensor-shift" in-body image stabilization, making the need for image stabilization technology in its lenses unnecessary. All Four Thirds cameras also incorporate an automatic sensor cleaning device, in which a thin glass filter in front of the sensor vibrates at 30 kHz, causing dust to fall off and adhere to a piece of sticky material below. Olympus' E-system camera bodies are noted for their inclusion of a wide range of firmware-level features and customization, good JPEG engine, and compact size. Because of the smaller format of Four Thirds, the viewfinders tend to be smaller than on comparable cameras. [27] [28]
Manufacture of Four Thirds cameras came to an end after the introduction of the mirrorless Micro Four Thirds format. The models that were marketed include:
Name | Image | Segment | Announced | Max. Resolution (MP) | Sensor | IS | Sealed | Dims. (W×H×D) | Wgt | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
Olympus E-1 | Professional | Jun 24, 2003 | 2560×1920 (5.1) | CCD | No | Yes | 141.0 mm × 104.0 mm × 81.0 mm (5.6 in × 4.1 in × 3.2 in) | 660 g (23 oz) | [30] | |
Olympus E-300 | Adv. Amateur | Sep 27, 2004 | 3264×2448 (8) | CCD | No | No | 146.5 mm × 85 mm × 64 mm (5.8 in × 3.3 in × 2.5 in) | 580 g (20 oz) | [31] | |
Olympus E-500 | Consumer | Sep 26, 2005 | 3264×2448 (8) | CCD | No | No | 129.5 mm × 94.5 mm × 66.0 mm (5.1 in × 3.7 in × 2.6 in) | 435 g (15.3 oz) | [32] | |
Olympus E-330 | Adv. Amateur | Jan 26, 2006 | 3136×2352 (7.5) | CMOS | No | No | 140.0 mm × 87.0 mm × 72.0 mm (5.5 in × 3.4 in × 2.8 in) | 550 g (19 oz) | [33] | |
Panasonic DMC-L1 | Feb 26, 2006 | 145.8 mm × 86.9 mm × 80.0 mm (5.7 in × 3.4 in × 3.1 in) | 530 g (19 oz) | [34] | ||||||
Leica Digilux 3 | Sep 14, 2006 | [35] | ||||||||
Olympus E-400 | Consumer | Sep 14, 2006 | 3648×2736 (10.1) | CCD | No | No | 129.5 mm × 91.0 mm × 53.0 mm (5.1 in × 3.6 in × 2.1 in) | 375 g (13.2 oz) | [36] | |
Olympus E-410 | Consumer | Mar 5, 2007 | 3648×2736 (10.1) | CMOS | No | No | 129.5 mm × 91.0 mm × 53.0 mm (5.1 in × 3.6 in × 2.1 in) | 375 g (13.2 oz) | [37] | |
Olympus E-510 | Adv. Amateur | 3648×2736 (10.1) | CMOS | Yes | No | 136.0 mm × 91.5 mm × 68.0 mm (5.4 in × 3.6 in × 2.7 in) | 460 g (16 oz) | [38] | ||
Panasonic DMC-L10 | Consumer | Aug 30, 2007 | 3648×2736 (10.1) | CMOS | No | No | 134.5 mm × 95.5 mm × 77.5 mm (5.3 in × 3.8 in × 3.1 in) | 530 g (19 oz) | [39] | |
Olympus E-3 | Professional | Oct 16, 2007 | 3648×2736 (10.1) | CMOS | Yes | Yes | 142.5 mm × 116.5 mm × 74.5 mm (5.6 in × 4.6 in × 2.9 in) | 810 g (29 oz) | [40] | |
Olympus E-420 | Consumer | Mar 5, 2008 | 3648×2736 (10.1) | CMOS | No | No | 129.5 mm × 91.0 mm × 53.0 mm (5.1 in × 3.6 in × 2.1 in) | 380 g (13 oz) | [41] | |
Olympus E-520 | Adv. Amateur | May 13, 2008 | 3648×2736 (10.1) | CMOS | Yes | No | 136.0 mm × 91.5 mm × 68.0 mm (5.4 in × 3.6 in × 2.7 in) | 475 g (16.8 oz) | [42] | |
Olympus E-30 | Semi-professional | Nov 5, 2008 | 3648×2736 (10.1) | CMOS | Yes | No | 141.5 mm × 107.5 mm × 75.0 mm (5.6 in × 4.2 in × 3.0 in) | 655 g (23.1 oz) | [43] | |
Olympus E-620 | Adv. Amateur | Feb 24, 2009 | 4032×3024 (12.3) | CMOS | Yes | No | 130.0 mm × 94.0 mm × 60.0 mm (5.1 in × 3.7 in × 2.4 in) | 475 g (16.8 oz) | [44] | |
Olympus E-450 | Consumer | Mar 31, 2009 | 3648×2736 (10.1) | CMOS | No | No | 129.5 mm × 91.0 mm × 53.0 mm (5.1 in × 3.6 in × 2.1 in) | 380 g (13 oz) | [45] | |
Olympus E-600 | Adv. Amateur | Aug 30, 2009 | 4032×3024 (12.3) | CMOS | Yes | No | 130.0 mm × 94.0 mm × 60.0 mm (5.1 in × 3.7 in × 2.4 in) | 475 g (16.8 oz) | [46] | |
Olympus E-5 | Professional | Sep 14, 2010 | 4032×3024 (12.3) | CMOS | Yes | Yes | 142.5 mm × 116.5 mm × 74.5 mm (5.6 in × 4.6 in × 2.9 in) | 800 g (28 oz) | [47] |
The Four Thirds lens mount is specified to be a bayonet type with a flange focal distance of 38.67 mm.
There were 41 lenses made for the Four Thirds System standard, including two that were modified and re-released in approximately 2009 with improved mechanisms but otherwise identical optics. [lower-alpha 1] [48]
Before announcing that it would stop production of Four Thirds lenses in early 2017, [49] Olympus produced 24 lenses for the Four Thirds System under their "Zuiko Digital" brand. They are divided into three grades — Standard, High Grade and Super High Grade. High Grade lenses have faster maximum apertures, but are significantly more expensive and larger, and the Super High Grade zooms have constant maximum aperture over the full zoom range; all but the Standard grade are weather-sealed. Lenses within each grade cover the range from wide-angle to super telephoto. [50] [51] The Zuiko Digital lenses are well regarded for their consistently good optics. [52] The following table lists all Zuiko Digital lenses available at the time Olympus stopped Four Thirds production: [53]
Wide angle | Standard | Telephoto | Super telephoto | Special-purpose | |
---|---|---|---|---|---|
Standard | 9–18 f/4–5.6 | 14–42 f/3.5–5.6 25 f/2.8 "pancake" | 40–150 f/4–5.6 | 70–300 f/4–5.6 macro | 35 f/3.5 macro 18–180 f/3.5-6.3 superzoom |
High Grade | 11–22 f/2.8–3.5 | 12–60 f/2.8–4 14–54 f/2.8–3.5 II | 50–200 f/2.8–3.5 SWD | 50 f/2 macro 8 f/3.5 fisheye | |
Super High Grade | 7–14 f/4 | 14–35 f/2 | 35–100 f/2 150 f/2 | 90–250 f/2.8 300 f/2.8 |
Olympus also made 1.4× and 2× teleconverters and an electronically coupled extension tube.
Sigma has adapted 13 lenses for the Four Thirds System, ranging from 10 mm to 800 mm, including several for which no equivalent exists: the fast primes (30 mm f/1.4 and 50 mm f/1.4) and extreme telephoto (300–800 mm f/5.6). As of 2014 all Sigma lenses for the Four Thirds System have been discontinued.
Leica has designed four lenses for the Four Thirds System: fast and slow normal zooms and a 14–150 mm super-zoom, all with Panasonic's image stabilization system, and an unstabilized f/1.4 25 mm prime. These are manufactured and sold by Panasonic.
An official list of available lenses can be found on Four-Thirds.org web site. [54]
As for the system itself, it was silently discontinued in favor of the Micro Four Thirds System.
Name | Mfr. | F.L. (mm) | Ap., Blades [lower-alpha 2] | Splash / Dust [lower-alpha 3] | OIS | Const. | Angle | Min. focus | Filter (mm) | Dims. (Φ×L) | Wgt. | Notes / Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fisheye lenses | ||||||||||||
ZUIKO DIGITAL ED 8mm F3.5 Fisheye | Olympus | 8 | f/3.5–22, 7(C) | Yes | No | 10e/6g | 180° | 0.135 m (5.31 in) | — | 79 mm × 77 mm (3.11 in × 3.03 in) | 485 g (17.1 oz) | [57] [58] |
Ultra wide angle lenses | ||||||||||||
ZUIKO DIGITAL ED 7-14mm F4.0 | Olympus | 7–14 | f/4–22, 7(C) | Yes | No | 18e/12g | 114–75° | 0.25 m (9.84 in) | — | 86.5 mm × 119.5 mm (3.41 in × 4.70 in) | 780 g (27.5 oz) | [59] [60] |
ZUIKO DIGITAL ED 9-18mm F4.0-5.6 | Olympus | 9–18 | f/4~5.6–22, 7(C) | No | No | 13e/9g | 100–62° | 0.25 m (9.84 in) | 72 | 79.5 mm × 73 mm (3.13 in × 2.87 in) | 275 g (9.7 oz) | [59] [61] |
Wide angle lenses | ||||||||||||
10-20mm F4-5.6 EX DC HSM | Sigma | 10–20 | f/4~5.6–22, 6 | No | No | 14e/10g | 94.5–56.8° | 0.24 m (9.45 in) | 77 | 83.5 mm × 86.4 mm (3.29 in × 3.40 in) | 495 g (17.5 oz) | [59] [62] |
ZUIKO DIGITAL 11-22mm F2.8-3.5 | Olympus | 11–22 | f/2.8~3.5–22, 7 | Yes | No | 12e/10g | 89–53° | 0.28 m (11.02 in) | 72 | 75 mm × 92.5 mm (2.95 in × 3.64 in) | 485 g (17.1 oz) | [59] [63] |
Normal lenses | ||||||||||||
ZUIKO DIGITAL ED 12-60mm F2.8-4.0 SWD | Olympus | 12–60 | f/2.8~4–22, 7(C) | Yes | No | 14e/10g | 84–20° | 0.25 m (9.84 in) | 72 | 79.5 mm × 98.5 mm (3.13 in × 3.88 in) | 575 g (20.3 oz) | [64] [65] |
ZUIKO DIGITAL ED 14-35mm F2.0 SWD | Olympus | 14–35 | f/2.0–22, 9(C) | Yes | No | 18e/17g | 75–34° | 0.35 m (13.78 in) | 77 | 86 mm × 123 mm (3.39 in × 4.84 in) | 900 g (31.7 oz) | [64] [66] |
ZUIKO DIGITAL ED 14-42mm F3.5-5.6 | Olympus | 14–42 | f/3.5~5.6–22, 7(C) | No | No | 10e/8g | 75–29° | 0.25 m (9.84 in) | 58 | 65.5 mm × 61 mm (2.58 in × 2.40 in) | 190 g (6.7 oz) | [64] [67] |
ZUIKO DIGITAL ED 14-45mm F3.5-5.6 | Olympus | 14–45 | f/3.5~5.6–22, 7 | No | No | 12e/10g | 75–27° | 0.38 m (14.96 in) | 58 | 71 mm × 86.5 mm (2.80 in × 3.41 in) | 285 g (10.1 oz) | [68] [69] |
LEICA D VARIO-ELMARIT 14-50mm F2.8-3.5 ASPH. MEGA O.I.S. | Panasonic | 14–50 | f/2.8~3.5–22, 7 | No | Yes | 16e/12g | 75–24° | 0.29 m (11.42 in) | 72 | 78.1 mm × 97.4 mm (3.07 in × 3.83 in) | 490 g (17.3 oz) | [64] [70] |
LEICA D VARIO-ELMAR 14-50mm F3.8-5.6 ASPH. MEGA O.I.S. | Panasonic | f/3.8~5.6–22, 7 | No | Yes | 15e/11g | 67 | 78 mm × 84.5 mm (3.07 in × 3.33 in) | 435 g (15.3 oz) | [64] [71] | |||
ZUIKO DIGITAL 14-54mm F2.8-3.5 | Olympus | 14–54 | f/2.8~3.5–22, 7 | Yes | No | 15e/11g | 75–23° | 0.22 m (8.66 in) | 67 | 73.5 mm × 88.5 mm (2.89 in × 3.48 in) | 435 g (15.3 oz) | [68] [72] |
ZUIKO DIGITAL 14-54mm F2.8-3.5 II | f/2.8~3.5–22, 7(C) | 74.5 mm × 88.5 mm (2.93 in × 3.48 in) | 440 g (15.5 oz) | [64] [73] | ||||||||
ZUIKO DIGITAL ED 17.5-45mm F3.5-5.6 | Olympus | 17.5–45 | f/3.5~5.6–22, 7(C) | No | No | 7e/7g | 63–27° | 0.28 m (11.02 in) | 52 | 71 mm × 70 mm (2.80 in × 2.76 in) | 210 g (7.4 oz) | Kit lens with E-500 [74] |
18-50mm F2.8 EX DC MACRO | Sigma | 18–50 | f/2.8–22, 7 | No | No | 15e/13g | 62–24° | 0.2 m (7.87 in) | 72 | 79 mm × 91.1 mm (3.11 in × 3.59 in) | 525 g (18.5 oz) | [64] [75] |
18-50mm F3.5-5.6 DC | Sigma | f/3.5~5.6–22, 7 | No | No | 8e/8g | 0.25 m (9.84 in) | 58 | 67.5 mm × 67.8 mm (2.66 in × 2.67 in) | 270 g (9.5 oz) | [64] [76] | ||
18-125mm F3.5-5.6 DC | Sigma | 18–125 | f/3.5~5.6–22, 9 | No | No | 15e/14g | 62–9.9° | 0.5 m (19.69 in) | 62 | 70 mm × 83 mm (2.76 in × 3.27 in) | 520 g (18.3 oz) | [68] [77] |
24mm F1.8 EX DG ASPHERICAL MACRO | Sigma | 24 | f/1.8–22, 9 | No | No | 10e/9g | 49° | 0.18 m (7.09 in) | 77 | 83.6 mm × 87.9 mm (3.29 in × 3.46 in) | 520 g (18.3 oz) | [57] [78] |
LEICA D SUMMILUX 25mm F1.4 ASPH. | Panasonic | 25 | f/1.4–16, 7(C) | No | No | 10e/9g | 47° | 0.38 m (14.96 in) | 72 | 77.7 mm × 75 mm (3.06 in × 2.95 in) | 510 g (18.0 oz) | [57] [79] |
ZUIKO DIGITAL 25mm F2.8 | Olympus | 25 | f/2.8–22, 7(C) | No | No | 5e/4g | 47° | 0.2 m (7.87 in) | 43 | 64 mm × 23.5 mm (2.52 in × 0.93 in) | 96 g (3.4 oz) | [57] [80] |
30mm F1.4 EX DC HSM | Sigma | 30 | f/1.4–16, 8 | No | No | 7e/7g | 40° | 0.4 m (15.75 in) | 62 | 77.8 mm × 63.9 mm (3.06 in × 2.52 in) | 410 g (14.5 oz) | [57] [81] |
Superzoom lenses | ||||||||||||
LEICA D VARIO-ELMAR 14-150mm F3.5-5.6 ASPH. MEGA O.I.S. | Panasonic | 14–150 | f/3.5~5.6–22, 7 | No | Yes | 15e/11g | 75–8.2° | 0.5 m (19.69 in) | 72 | 78.5 mm × 90.4 mm (3.09 in × 3.56 in) | 535 g (18.9 oz) | [64] [82] |
ZUIKO DIGITAL ED 18-180mm F3.5-6.3 | Olympus | 18–180 | f/3.5~6.3–22, 7 | No | No | 15e/13g | 62–6.9° | 0.45 m (17.72 in) | 62 | 78 mm × 84.5 mm (3.07 in × 3.33 in) | 435 g (15.3 oz) | [64] [83] |
Telephoto lenses | ||||||||||||
ZUIKO DIGITAL ED 35-100mm F2.0 | Olympus | 35–100 | f/2.0–22, 9(C) | Yes | No | 21e/18g | 34–12° | 1.4 m (55.12 in) | 77 | 96.5 mm × 213.5 mm (3.80 in × 8.41 in) | 1,650 g (58.2 oz) | [84] [85] |
ZUIKO DIGITAL 40-150mm F3.5-4.5 | Olympus | 40–150 | f/3.5~4.5–22, 7(C) | No | No | 13e/10g | 30–8.2° | 1.5 m (59.06 in) | 58 | 77 mm × 107 mm (3.03 in × 4.21 in) | 425 g (15.0 oz) | [86] [87] |
ZUIKO DIGITAL ED 40-150mm F4-5.6 | f/4.0~5.6–22, 7(C) | 12e/9g | 1.4 m (55.12 in) | 65.5 mm × 72 mm (2.58 in × 2.83 in) | 220 g (7.8 oz) | [84] [88] | ||||||
50mm F1.4 EX DG HSM | Sigma | 50 | f/1.4–16, 9 | No | No | 8e/6g | 24° | 0.45 m (17.72 in) | 77 | 84.5 mm × 73.7 mm (3.33 in × 2.90 in) | 530 g (18.7 oz) | [57] [89] |
ZUIKO DIGITAL ED 50-200mm F2.8-3.5 | Olympus | 50–200 | f/2.8~3.5–22, 9 | Yes | No | 16e/15g | 24–6.2° | 1.2 m (47.24 in) | 67 | 83 mm × 157 mm (3.27 in × 6.18 in) | 920 g (32.5 oz) | [86] [90] |
ZUIKO DIGITAL ED 50-200mm F2.8-3.5 SWD | f/2.8~3.5–22, 9(C) | 86.5 mm × 157 mm (3.41 in × 6.18 in) | 995 g (35.1 oz) | [84] [91] | ||||||||
APO 50-500mm F4.0-6.3 EX DG HSM | Sigma | 50–500 | f/4.0~6.3–22, 9 | No | No | 20e/16g | 24–2.5° | 1.0–3.0 m (39.37–118.11 in) | 86 | 95 mm × 223.9 mm (3.74 in × 8.81 in) | 1,830 g (64.6 oz) | [86] [92] |
55-200mm F4.0-5.6 DC | Sigma | 55–200 | f/4.0~5.6–22, 8 | No | No | 12e/9g | 22–2.5° | 1.1 m (43.31 in) | 55 | 71.5 mm × 92.5 mm (2.81 in × 3.64 in) | 330 g (11.6 oz) | [86] [93] |
APO 70-200mm F2.8 II EX DG MACRO HSM | Sigma | 70–200 | f/2.8–22, 9 | No | No | 18e/15g | 18–6.2° | 1.0 m (39.37 in) | 77 | 86.5 mm × 189.8 mm (3.41 in × 7.47 in) | 1,385 g (48.9 oz) | [86] [94] |
ZUIKO DIGITAL ED 70-300mm F4.0-5.6 | Olympus | 70–300 | f/4.0~5.6–22, 9(C) | No | No | 14e/10g | 18–4.1° | 0.96–1.2 m (37.80–47.24 in) | 58 | 80 mm × 127.5 mm (3.15 in × 5.02 in) | 615 g (21.7 oz) | [84] [95] |
ZUIKO DIGITAL ED 90-250mm F2.8 | Olympus | 90–250 | f/2.8–22, 9(C) | Yes | No | 17e/12g | 14–5.0° | 2.5 m (98.43 in) | 105 | 124 mm × 276 mm (4.88 in × 10.87 in) | 3,270 g (115.3 oz) | [84] [96] |
APO 135-400mm F4.5-5.6 DG | Sigma | 135–400 | f/4.5~5.6–22, 9 | No | No | 13e/11g | 9.2–3.1° | 2.0–2.2 m (78.74–86.61 in) | 77 | 83.5 mm × 189 mm (3.29 in × 7.44 in) | 1,280 g (45.2 oz) | [86] [97] |
ZUIKO DIGITAL ED 150mm F2.0 | Olympus | 150 | f/2.0–22, 9(C) | Yes | No | 11e/9g | 8.2° | 1.4 m (55.12 in) | 82 | 100 mm × 150 mm (3.94 in × 5.91 in) | 1,465 g (51.7 oz) | [57] [98] |
ZUIKO DIGITAL ED 300mm F2.8 | Olympus | 300 | f/2.8–22, 9 | Yes | No | 13e/11g | 4.1° | 2.4 m (94.49 in) | 43(D) | 127 mm × 285 mm (5.00 in × 11.22 in) | 3,290 g (116.1 oz) | [57] [99] |
APO 300-800mm F5.6 EX DG HSM | Sigma | 300–800 | f/5.6–32, 9 | No | No | 18e/16g | 4.1–1.6° | 6.0 m (236.22 in) | 46(R) | 156.5 mm × 549.4 mm (6.16 in × 21.63 in) | 5,915 g (208.6 oz) | [86] [100] |
Macro lenses | ||||||||||||
ZUIKO DIGITAL 35mm F3.5 Macro | Olympus | 35 | f/3.5–22, 7(C) | No | No | 6e/6g | 34° | 0.146 m (5.75 in) | 52 | 71 mm × 53 mm (2.80 in × 2.09 in) | 165 g (5.8 oz) | [101] [102] |
ZUIKO DIGITAL ED 50mm F2.0 Macro | Olympus | 50 | f/2.0–22, 7 | Yes | No | 11e/10g | 24° | 0.24 m (9.45 in) | 52 | 71 mm × 61.5 mm (2.80 in × 2.42 in) | 300 g (10.6 oz) | [101] [103] |
MACRO 105mm F2.8 EX DG | Sigma | 105 | f/2.8–22, 8 | No | No | 11e/10g | 12° | 0.31 m (12.20 in) | 58 | 74 mm × 102.9 mm (2.91 in × 4.05 in) | 470 g (16.6 oz) | [101] [104] |
APO MACRO 150mm F2.8 EX DG HSM | Sigma | 150 | f/2.8–22, 9 | No | No | 16e/12g | 8.2° | 0.38 m (14.96 in) | 72 | 79.6 mm × 142.4 mm (3.13 in × 5.61 in) | 920 g (32.5 oz) | [101] [105] |
Teleconverters | ||||||||||||
ZUIKO DIGITAL 1.4× Teleconverter EC-14 | Olympus | 1.4× | 1.4× | No | No | 6e/5g | approx. ÷1.4 | ×1 | — | 68 mm × 22 mm (2.68 in × 0.87 in) | 170 g (6.0 oz) | [106] [107] |
ZUIKO DIGITAL 2.0× Teleconverter EC-20 | Olympus | 2.0× | 2.0× | No | No | 7e/5g | approx. ÷2 | ×1 | — | 68 mm × 41 mm (2.68 in × 1.61 in) | 225 g (7.9 oz) | [106] [108] |
Macro photography is extreme close-up photography, usually of very small subjects and living organisms like insects, in which the size of the subject in the photograph is greater than life-size . By the original definition, a macro photograph is one in which the size of the subject on the negative or image sensor is life-size or greater. In some senses, however, it refers to a finished photograph of a subject that is greater than life-size.
The Olympus E-1, introduced in 2003, was the first DSLR system camera designed from the ground up for digital photography This contrasts with its contemporaries which offered systems based on reused parts from previous 135 film systems, modified to fit with a sensor size of APS-C.
A digital single-lens reflex camera is a digital camera that combines the optics and mechanisms of a single-lens reflex camera with a solid-state image sensor and digitally records the images from the sensor.
Sigma Corporation is a Japanese company, manufacturing cameras, lenses, flashes and other photographic accessories. All Sigma products are produced in the company's own Aizu factory in Bandai, Fukushima, Japan. Although Sigma produces several camera models, the company is best known for producing high-quality lenses and other accessories that are compatible with the cameras produced by other companies.
Advanced Photo System type-C (APS-C) is an image sensor format approximately equivalent in size to the Advanced Photo System film negative in its C ("Classic") format, of 25.1×16.7 mm, an aspect ratio of 3:2 and Ø 30.15 mm field diameter. It is therefore also equivalent in size to the Super 35 motion picture film format, which has the dimensions of 24.89 mm × 18.66 mm and Ø 31.11 mm field diameter.
Lumix is Panasonic's brand of digital cameras, ranging from pocket point-and-shoot models to digital SLRs.
The Lumix DMC-L1 is Panasonic's first DSLR camera, and was announced in February 2006. This camera adheres to the Four Thirds System lens mount standard, making it the first non-Olympus Four Thirds camera, and thus confirming that the Four Thirds System is a semi-open standard such that compatible camera bodies can be built by different companies.
A dust reduction system, or dust removal system, is used in several makes of digital cameras to remove dust from the image sensor. Every time lenses are changed, dust may enter the camera body and settle on the image sensor.
This article details lensesfor single-lens reflex and digital single-lens reflex cameras. The emphasis is on modern lenses for 35 mm film SLRs and for "full-frame" DSLRs with sensor sizes less than or equal to 35 mm.
The Micro Four Thirds system is a standard released by Olympus Imaging Corporation and Panasonic in 2008, for the design and development of mirrorless interchangeable lens digital cameras, camcorders and lenses. Camera bodies are available from Blackmagic, DJI, JVC, Kodak, Olympus, OM System, Panasonic, Sharp, and Xiaomi. MFT lenses are produced by Cosina Voigtländer, Kowa, Kodak, Mitakon, Olympus, Panasonic, Samyang, Sharp, Sigma, SLR Magic, Tamron, Tokina, TTArtisan, Veydra, Xiaomi, Laowa, Yongnuo, Zonlai, Lensbaby, Venus Optics and 7artisans amongst others.
The Panasonic Lumix DMC-G1 was the first digital mirrorless interchangeable-lens camera (MILC) adhering to the Micro Four Thirds system design standard. The G1 camera is similar to the larger Four Thirds system format DSLR cameras, but replaces the complex optical path needed for the optical viewfinder with an electronic viewfinder EVF displaying a live view image directly from the sensor. Eliminating the mirror box and optical viewfinder allows for smaller and lighter camera bodies, while the less complex optical path also allows for smaller, lighter lens designs.
The Olympus Pen E-P1 announced on 16 June 2009 is Olympus Corporation's first camera that adheres to the Micro Four Thirds (MFT) system design standard. The first camera to use the Micro Four Thirds mount was Panasonic's G-1 camera.
A mirrorless camera is a digital camera which, in contrast to DSLRs, does not use a mirror in order to ensure that the image presented to the photographer through the viewfinder is identical to that taken by the camera. They have come to replace DSLRs, which have historically dominated interchangeable lens cameras. Other terms include electronic viewfinder interchangeable lens (EVIL) cameras and compact system cameras (CSCs).
The Panasonic Lumix DMC-G3 is a digital mirrorless interchangeable lens camera adhering to the joint Olympus and Panasonic Micro Four Thirds System (MFT) system design standard. The Panasonic Lumix DMC-G3 is the eighth Panasonic MFT camera introduced under the standard and the thirteenth model MFT camera introduced by either Olympus or Panasonic, as of the G3 product announcement date.
The Panasonic Lumix G 14mm F2.5 lens is a pancake-style prime lens for Micro Four Thirds system cameras. In the Micro Four Thirds format, it is moderately wide. As of its late-2010 release, it is claimed by Panasonic to be the lightest interchangeable digital-camera lens. It is the prime-lens option available with the Panasonic GF2 and GF3, and available separately.
The Olympus PEN E-P3 announced on 30 June 2011 is Olympus Corporation's seventh camera that adheres to the Micro Four Thirds (MFT) system design standard. The E-P3 succeeds the Olympus PEN E-P2, and was announced in concert with two other models, the Olympus PEN E-PL3, and the Olympus PEN E-PM1.
Panasonic Lumix DMC-GF3 is the eighth camera in Panasonic's Lumix G-series adhering to the Micro Four Thirds System (MFT) design standard, and was announced in June 2011.
The Panasonic Leica D Vario-Elmarit 14-50mm F2.8-3.5 ASPH Mega OIS is an interchangeable camera lens announced by Panasonic on February 26, 2006. It was the first Leica lens with optical image stabilisation.
The Olympus Zuiko Digital ED 50-200mm F2.8-3.5 is an interchangeable lens for Four Thirds system digital single-lens reflex cameras announced by Olympus Corporation during the system launch on June 24, 2003. The SWD version is equipped with an ultrasonic motor for focusing, and was introduced in 2007 with the Olympus E-3.
Details of the Four Thirds System standard are available to camera equipment manufacturers and industry organizations on an NDA basis. Full specifications cannot be provided to individuals or other educational/research entities.
The key difference between contrast-detection autofocus (as generally used in compacts and mirrorless cameras), and phase detection (as traditionally used in DSLRs) is that phase detection is able to assess how out-of-focus the image is, and determine directly how far and in what direction the lens needs to move its focus group to achieve a sharp image. Contrast detection has to scan through at least part of its focus range to find the point of optimal focus.
This difference totally changes to the way lenses need to be designed - those optimised for phase detection need to be able to race to a specified location very quickly, whereas contrast detection lenses need to be able to scan back and forth very quickly. Traditionally, very few lenses designed for phase detection have coped very well with the subtle, scanning motion required for contrast detection. Those designed for Four Thirds SLRs could autofocus on previous Micro Four Thirds cameras, but only slowly and hesitantly.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)