Geology of Sierra Leone

Last updated
Topography of Sierra Leone Sierra Leone Topography.png
Topography of Sierra Leone

The geology of Sierra Leone is primarily very ancient Precambrian Archean and Proterozoic crystalline igneous and metamorphic basement rock, in many cases more than 2.5 billion years old. Throughout Earth history, Sierra Leone was impacted by major tectonic and climatic events, such as the Leonean, Liberian and Pan-African orogeny mountain building events, the Neoproterozoic Snowball Earth and millions of years of weathering, which has produced thick layers of regolith across much of the country's surface.

Contents

Stratigraphy & Geologic History

Eastern Sierra Leone is predominantly ancient Archean crystalline basement rocks, more than 2.5 billion years old, belonging to the Kenema-Man shield. The shield region outcrops elsewhere in the wider West African region, in Guinea, Liberia and Ivory Coast. Within the Kenema-Man domain, supracrustal rocks form syncline greenstone belts, surrounded by granite-gneiss and granitoid autochthon areas. In the west of the country, greenstone belts reach up to 130 kilometers long, with thick successions up to 6.5 kilometers, metamorphosed to amphibolite grade metamorphic facies. The country's greenstone belts have a smaller representation of banded iron formations than in many other regions.

Greenstone belt schists form shorter, 40 kilometer belts, in the southeast with varying degrees of metamorphism ranging from greenschist to granulite facies. Central Sierra Leone has Kenema Assemblage granites and acid gneiss, rocks metamorphosed to granulite grade, schist sediments and volcanic fragments. Geologists subdivide the Kenema Assemblage into the older Loko Group, with amphibolite, serpentinite, quartzite and banded iron formations, and the younger Kambui Supergroup, with amphibolitic and ultrabasic volcanic rocks. The Loko Group was deformed by the Leonean orogeny tectonothermal event, 2.96 billion years ago. By contrast, the younger Kambui Supergroup—and its top units of tuff, psammite, pelite and banded iron formations was deformed along an east-west axis during the Leonean orogeny.

The subsequent Liberian orogeny, 2.75 billion years ago, deformed the rocks again, along a new north-south axis. [1]

Proterozoic (2.5 billion-539 million years ago)

In the Neoproterozoic period of the Proterozoic, 550 million years ago, Sierra Leone was affected the Pan-African orogeny, locally termed by Rokelide Orogen. The orogenic belt extends for 600 kilometers between coastal Guinea and Sierra Leone to Liberia. The Kasila Group is made up of high-grade supracrustal rocks that formed in the Archean and were heavily reworked during the Pan-African orogeny. Kasila Group rocks include charnockite, garnet-hornblende gneiss, garnet and plagioclase gneiss and acid gneiss, metamorphosed to granulite facies. The formation also has local occurrences of pyroxenite and hornblendite.

Further east, the recumbent folds of the Marampa Group overly granites and may contact the Rokel River Group at a fault. The Marampa Group formed 2.1 billion years ago, in the early Proterozoic and deformed 560 million years ago at the beginning of the Pan-African orogeny. The group includes ironstone, volcanic sediments and both mafic and felsic volcanic rocks. [2]

The Rokel River Group is the eastern end of the Rokelide belt and includes nine different members and formations, spanning a width of 30 kilometers and a length of 225 kilometers. The rocks in the Rokel River Group include extensive sequences of marl, quartzite, volcanic rocks and sandstone. Although dating of the group remains uncertain, the bottom units are rocks formed from glacial sediments that correlate with other late Neoproterozoic Snowball Earth glacial deposits throughout West Africa. [3]

Tectonics

In terms of geologic structure, Sierra Leone can be subdivided into two major groups. The eastern unit is part of the West African Craton and has a northeast-southwest foliation, that extends into the interior. The western structural unit encompasses the coastal areas and is oblique to the grain of the central highlands. [3]

Hydrogeology

Unconsolidated alluvial deposits up to 15 meters thick overly many areas of basement rock in Sierra Leone. Along the coast is the Bullom Group, a belt of unconsolidated sands and gravels 10 to 20 meters thick, overlying sands and clays 30 to 80 meters thick. The formation is a moderately productive aquifer. The Saionya Scarp and Rokel River Group form a consolidated, near-surface weathered regolith aquifer in metasedimentary rocks, with low intergranular porosity. Where groundwater does exist in these groups, it aggregates along fractures, formed by old bedding plains.

Much of Sierra Leone's territory is underlain by weathered bedrock regolith. There is very little clay in the 20 meter thick weathered section, which is mostly metal oxides, although the lowest layers near the intact, unweathered basement rock tends to high concentrations of clay. Fractures in the unweathered rock store and transmit groundwater. [4]

Natural resource geology

Sierra Leone has extensive natural resources and mining of rutile, ilmenite, diamonds, bauxite and gold played an important role in the economy prior to the civil war. [3]

Related Research Articles

<span class="mw-page-title-main">Yilgarn Craton</span> Large craton in Western Australia

The Yilgarn Craton is a large craton that constitutes the bulk of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have been dated at ~4.27 Ga, with one detrital zircon dated as old as 4.4 Ga.

The West African Craton (WAC) is one of the five cratons of the Precambrian basement rock of Africa that make up the African Plate, the others being the Kalahari craton, Congo craton, Saharan Metacraton and Tanzania Craton. Cratons themselves are tectonically inactive, but can occur near active margins, with the WAC extending across 14 countries in Western Africa, coming together in the late Precambrian and early Palaeozoic eras to form the African continent. It consists of two Archean centers juxtaposed against multiple Paleoproterozoic domains made of greenstone belts, sedimentary basins, regional granitoid-tonalite-trondhjemite-granodiorite (TTG) plutons, and large shear zones. The craton is overlain by Neoproterozoic and younger sedimentary basins. The boundaries of the WAC are predominantly defined by a combination of geophysics and surface geology, with additional constraints by the geochemistry of the region. At one time, volcanic action around the rim of the craton may have contributed to a major global warming event.

<span class="mw-page-title-main">Tectonic evolution of the Aravalli Mountains</span> Overview article

The Aravalli Mountain Range is a northeast-southwest trending orogenic belt in the northwest part of India and is part of the Indian Shield that was formed from a series of cratonic collisions. The Aravalli Mountains consist of the Aravalli and Delhi fold belts, and are collectively known as the Aravalli-Delhi orogenic belt. The whole mountain range is about 700 km long. Unlike the much younger Himalayan section nearby, the Aravalli Mountains are believed much older and can be traced back to the Proterozoic Eon. They are arguably the oldest geological feature on Earth. The collision between the Bundelkhand craton and the Marwar craton is believed to be the primary mechanism for the development of the mountain range.

The geology of Central African Republic (CAR) is part of the broader geology of Africa. CAR occupies a swath of ancient rocks, dating back billions of years that record significant aspects of Earth history and yield minerals vital to the country's small economy.

The geology of Liberia is largely extremely ancient rock formed between 3.5 billion and 539 million years ago in the Archean and the Neoproterozoic, with some rocks from the past 145 million years near the coast. The country has rich iron resources as well as some diamonds, gold and other minerals in ancient sediment formations weathered to higher concentrations by tropical rainfall.

<span class="mw-page-title-main">Geology of Ghana</span>

The geology of Ghana is primarily very ancient crystalline basement rock, volcanic belts and sedimentary basins, affected by periods of igneous activity and two major orogeny mountain building events. Aside from modern sediments and some rocks formed within the past 541 million years of the Phanerozoic Eon, along the coast, many of the rocks in Ghana formed close to one billion years ago or older leading to five different types of gold deposit formation, which gave the region its former name Gold Coast.

<span class="mw-page-title-main">Geology of the Democratic Republic of the Congo</span>

The geology of the Democratic Republic of the Congo is extremely old, on the order of several billion years for many rocks. The country spans the Congo Craton: a stable section of ancient continental crust, deformed and influenced by several different mountain building orogeny events, sedimentation, volcanism and the geologically recent effects of the East Africa Rift System in the east. The country's complicated tectonic past have yielded large deposits of gold, diamonds, coltan and other valuable minerals.

<span class="mw-page-title-main">Geology of Ivory Coast</span>

The geology of Ivory Coast is almost entirely extremely ancient metamorphic and igneous crystalline basement rock between 2.1 and more than 3.5 billion years old, comprising part of the stable continental crust of the West African Craton. Near the surface, these ancient rocks have weathered into sediments and soils 20 to 45 meters thick on average, which holds much of Ivory Coast's groundwater. More recent sedimentary rocks are found along the coast. The country has extensive mineral resources such as gold, diamonds, nickel and bauxite as well as offshore oil and gas.

The geology of Malawi formed on extremely ancient crystalline basement rock, which was metamorphosed and intruded by igneous rocks during several orogeny mountain building events in the past one billion years. The rocks of the Karoo Supergroup and newer sedimentary units deposited across much of Malawi in the last 251 million years, in connection with a large rift basin on the supercontinent Gondwana and the more recent rifting that has created the East African Rift, which holds Lake Malawi. The country has extensive mineral reserves, many of them poorly understood or not exploited, including coal, vermiculite, rare earth elements and bauxite.

The geology of Mauritania is built on more than two billion year old Archean crystalline basement rock in the Reguibat Shield of the West African Craton, a section of ancient and stable continental crust. Mobile belts and the large Taoudeni Basin formed and filled with sediments in the connection with the Pan-African orogeny mountain building event 600 million years ago and a subsequent orogeny created the Mauritanide Belt. In the last 251 million years, Mauritania has accumulated additional sedimentary rocks during periods of marine transgression and sea level retreat. The arid country is 50% covered in sand dunes and has extensive mineral resources, although iron plays the most important role in the economy.

The geology of Mozambique is primarily extremely old Precambrian metamorphic and igneous crystalline basement rock, formed in the Archean and Proterozoic, in some cases more than two billion years ago. Mozambique contains greenstone belts and spans the Zimbabwe Craton, a section of ancient stable crust. The region was impacted by major tectonic events, such as the mountain building Irumide orogeny, Pan-African orogeny and the Snowball Earth glaciation. Large basins that formed in the last half-billion years have filled with extensive continental and marine sedimentary rocks, including rocks of the extensive Karoo Supergroup which exist across Southern Africa. In some cases these units are capped by volcanic rocks. As a result of its complex and ancient geology, Mozambique has deposits of iron, coal, gold, mineral sands, bauxite, copper and other natural resources.

The geology of Niger comprises very ancient igneous and metamorphic crystalline basement rocks in the west, more than 2.2 billion years old formed in the late Archean and Proterozoic eons of the Precambrian. The Volta Basin, Air Massif and the Iullemeden Basin began to form in the Neoproterozoic and Paleozoic, along with numerous ring complexes, as the region experienced events such as glaciation and the Pan-African orogeny. Today, Niger has extensive mineral resources due to complex mineralization and laterite weathering including uranium, molybdenum, iron, coal, silver, nickel, cobalt and other resources.

<span class="mw-page-title-main">Geology of Tanzania</span>

The geology of Tanzania began to form in the Precambrian, in the Archean and Proterozoic eons, in some cases more than 2.5 billion years ago. Igneous and metamorphic crystalline basement rock forms the Archean Tanzania Craton, which is surrounded by the Proterozoic Ubendian belt, Mozambique Belt and Karagwe-Ankole Belt. The region experienced downwarping of the crust during the Paleozoic and Mesozoic, as the massive Karoo Supergroup deposited. Within the past 100 million years, Tanzania has experienced marine sedimentary rock deposition along the coast and rift formation inland, which has produced large rift lakes. Tanzania has extensive, but poorly explored and exploited natural resources, including coal, gold, diamonds, graphite and clays.

The geology of Uganda extends back to the Archean and Proterozoic eons of the Precambrian, and much of the country is underlain by gneiss, argillite and other metamorphic rocks that are sometimes over 2.5 billion years old. Sedimentary rocks and new igneous and metamorphic units formed throughout the Proterozoic and the region was partially affected by the Pan-African orogeny and Snowball Earth events. Through the Mesozoic and Cenozoic, ancient basement rock has weathered into water-bearing saprolite and the region has experienced periods of volcanism and rift valley formation. The East Africa Rift gives rise to thick, more geologically recent sediment sequences and the country's numerous lakes. Uganda has extensive natural resources, particularly gold.

<span class="mw-page-title-main">Geology of Sudan</span>

The geology of Sudan formed primarily in the Precambrian, as igneous and metamorphic crystalline basement rock. Ancient terranes and inliers were intruded with granites, granitoids as well as volcanic rocks. Units of all types were deformed, reactivated, intruded and metamorphosed during the Proterozoic Pan-African orogeny. Dramatic sheet flow erosion prevented almost any sedimentary rocks from forming during the Paleozoic and Mesozoic. From the Mesozoic into the Cenozoic the formation of the Red Sea depression and complex faulting led to massive sediment deposition in some locations and regional volcanism. Sudan has petroleum, chromite, salt, gold, limestone and other natural resources.

The geology of Nigeria formed beginning in the Archean and Proterozoic eons of the Precambrian. The country forms the Nigerian Province and more than half of its surface is igneous and metamorphic crystalline basement rock from the Precambrian. Between 2.9 billion and 500 million years ago, Nigeria was affected by three major orogeny mountain-building events and related igneous intrusions. Following the Pan-African orogeny, in the Cambrian at the time that multi-cellular life proliferated, Nigeria began to experience regional sedimentation and witnessed new igneous intrusions. By the Cretaceous period of the late Mesozoic, massive sedimentation was underway in different basins, due to a large marine transgression. By the Eocene, in the Cenozoic, the region returned to terrestrial conditions.

<span class="mw-page-title-main">Geology of Sweden</span>

The geology of Sweden is the regional study of rocks, minerals, tectonics, natural resources and groundwater in the country. The oldest rocks in Sweden date to more than 2.5 billion years ago in the Precambrian. Complex orogeny mountain building events and other tectonic occurrences built up extensive metamorphic crystalline basement rock that often contains valuable metal deposits throughout much of the country. Metamorphism continued into the Paleozoic after the Snowball Earth glaciation as the continent Baltica collided with an island arc and then the continent Laurentia. Sedimentary rocks are most common in southern Sweden with thick sequences from the last 250 million years underlying Malmö and older marine sedimentary rocks forming the surface of Gotland.

The geology of Quebec involves several different geologic provinces, made up of ancient Precambrian crystalline igneous and metamorphic rock, overlain by younger sedimentary rocks and soils. Most of southern Quebec is dominated by the Grenville Province, while the vast north is divided between the large Superior Province and the Churchill Province to the east, near Labrador.

<span class="mw-page-title-main">Geology of Latvia</span>

Geology of Latvia includes an ancient Archean and Proterozoic crystalline basement overlain with Neoproterozoic volcanic rocks and numerous sedimentary rock sequences from the Paleozoic, some from the Mesozoic and many from the recent Quaternary past. Latvia is a country in the Baltic region of Northern Europe.

The geology of Newfoundland and Labrador includes basement rocks formed as part of the Grenville Province in the west and Labrador and the Avalonian microcontinent in the east. Extensive tectonic changes, metamorphism and volcanic activity have formed the region throughout Earth history.

References

  1. Schlüter, Thomas (2008). Geological Atlas of Africa. Springer. p. 220.
  2. Schlüter 2008, p. 220.
  3. 1 2 3 Schlüter 2008, p. 222.
  4. "Hydrogeology of Sierra Leone". British Geological Survey.