Geology of the Democratic Republic of the Congo

Last updated
Topographic map of the Democratic Republic of the Congo Congo Kinshasa Topography.png
Topographic map of the Democratic Republic of the Congo
Mount Stanley on the border with Uganda MtStanley.jpg
Mount Stanley on the border with Uganda

The geology of the Democratic Republic of the Congo (DRC or Congo-Kinshasa, formerly Zaire and Belgian Congo) is extremely old, on the order of several billion years for many rocks. The country spans the Congo Craton: a stable section of ancient continental crust, deformed and influenced by several different mountain building orogeny events, sedimentation, volcanism and the geologically recent effects of the East Africa Rift System in the east. The country's complicated tectonic past have yielded large deposits of gold, diamonds, coltan and other valuable minerals.

Contents

Stratigraphy, tectonics & geologic History

Map of Western Gondwana with the Congo Craton Cratons West Gondwana.svg
Map of Western Gondwana with the Congo Craton

Archean terranes in the Congo Craton are exposed as part of the Angolan Shield in Kasai Province, the foreland of the West Congolian mobile belt in the northwest and as granite and greenstone belts spanning into neighboring Central African Republic, Uganda and South Sudan.

Angolan Shield

In Kasai, the metamorphic basement rocks of the Angolan Shield are bounded by a fault at 4 degrees south latitude, with underlying poorly exposed migmatite and gneiss and overlying rocks from the past 541 million years of the Phanerozoic. The oldest rocks in the DRC are the 3.4 billion year old Upper Luanyi granite gneiss, which contains pegmatites, metamorphosed to amphibolite grade metamorphic facies. Faults are believed to separate these rocks from the Kanda Kanda gneisses, which contain lenses of pink alaskite gneiss, probably formed near granulite grade metamorphism and originating from charnockite, gabbro and norite rocks in the Kasai-Lomami group. Geologists estimate that the Kanda Kanda gneisses are formed between 3.4 and 2.82 billion years ago.

The Kasai-Lomami group has two rock units. One is a mafic unit with gabbro, norite, amphibolite and anorthosite. Taken together, they are the remains of magma intrusions metamorphosed to granulite grade. The second unit contains dark gneiss and aluminium-rich granulite, which may have originated from sediments, along with metadolerite dikes. The metamorphism and deformation that affected both units likely happened 2.8 billion years ago. [1]

Foreland basin: West Congolian mobile belt

The West Congolian mobile belt became a foreland basin during the Pan-African orogeny and forms the granitoid Chaillu Massif spanning into the Republic of Congo through Gabon. The massif has a north-south foliation and two generations of granitoids. Gray granodiorite shifts to quartz, diorite, biotite and amphibolite-rich types, cut by veins of pink, potassic migmatite. The Chaillu Massif granitoids are 2.7 billion years old and engulfed pre-existing schist and greenstone. [2]

Northeast Congo Craton

In northeastern DRC, Archean gneisses and granite-greenstones terranes are common. The Bomu Gneissic Complex and the West Nile Gneissic Complex basement gneiss rocks are 3.5 billion year old, while the more scattered Ganguan Greenstone Belt in the west and the Kibalian Greenstone Belt in the east formed between 3.2 and 2.6 billion years ago. The Bomu Gneissic Complex outcrops near the Bomu River and the Uele River at the border with the Central African Republic. Out of four named types of gneiss, the Bomu gneiss, rich in amphibolite and pyroxene is the largest group in a synform structure in northern DRC. The different gneisses probably began to form 3.5 billion years ago from oceanic source material and were later intruded by tonalite around 3.41 billion years ago.

Granulite rocks in the same region as the West Nile Gneissic Complex pre-date the Watian orogeny 2.9 billion years ago and contain charnockitic dolerite dikes, with isoclinal folding of the rock. After the Watian orogeny, volcanic and sedimentary rocks in what is now northeast DRC metamorphosed into the Western Gray Gneissic Group with biotite, hornblende and microlite. The subsequent Aruan orogeny 2.68 billion years ago gave these rocks a northeast plunging fold.

The Ganguan Greenstone Belt is 3.2 billion years old and contains sericite quartzites, quartz phyllite, talc schist poor in quartz and chlorite schist. The Kibalian Greenstone Belt appears at surface level to be separate belts, divided up by the Upper Congo Granitoid Massif, but geologists believe it is actually a continuous greenstone belt with mafic and intermediate volcanic rocks in the west and banded iron formations in the east. Granitoid rocks are the most common in northeastern DRC, probably formed from monzonite granites and tonalities. [3]

Neoproterozoic (1 Ga to 542 Ma)

The Lufilian Arc, now located between central Zambia and DRC's Shaba Province formed in an extension zone in the Neoproterozoic, during the Damara-Lufilian-Zambezi orogeny. The Lufilian Arc separates the Congo Craton from the Kalahari Craton and the Bangweulu Craton and overprints alignments in the rock from the Kibaran orogeny and the Irumide orogeny 1.3 to 1.1 billion years ago. Beginning 875 million years ago, up to 10 kilometers of sediment deposited in rift basins and sag basins in Katanga. In Katanga, the bottom of the sedimentary sequence is breccia, overlain by carbonaceous shales, iron formations and the remains of pyroclastic flows in the Mwashya Group. The overlying Kundelungu Supergroup starts off with glacial sedimentary rocks from the Neoproterozoic Snowball Earth event followed by a cap of carbonates.

The sediments in Katanga metamorphosed to greenschist and amphibolite grade during the Pan-African orogeny. Away from the mobile belts, the Congo Craton has large sedimentary rock formations leftover from the molasses areas associated with the different orogenies deep in the past, which include stromatolite and acritarch fossils. Some examples include the dolomitic shales, conglomerates, quartzites, siltstones and shales of the Mbuyi Mayi Supergroup in the southeast or the quartzites and carbonate assemblages of the Lindian Supergroup in the north, formed from stromatolites. [3]

Mesozoic and Cenozoic (251 Ma to present)

Downwarping of the crust of the Congo Craton in the Mesozoic left the basin to fill with river and lake sediments in the Late Jurassic and Early Cretaceous, forming the Lualaba Series and Kamina Series. The Kwanga Series preserves fossilized freshwater fish and dates to the Late Cretaceous, along with alluvial diamonds at its base, suggesting kimberlite pipe eruptions at the time.

After a long period of relative tectonic quiet, volcanism started in the geologically recent past of the late Cenozoic in the Western Rift of the East African Rift System, at the same time that eruptions began in the Kenyan Rift. The oldest basalt at the base of the Virunga Massif, east of the current rift is 14 million years old. Alkaline basalts erupted from 13 million to nine million years ago. In the late Pliocene, the fracture pattern changed to northeast-southwest, building up a chain of volcanic mountains formed from potassic, undersaturated lava. [4]

The Wembo-Nyama ring structure in Omeonga is a possible impact crater in DRC, the World Impact Crater list by Anna Mikheeva lists it as "potential". [5]

Hydrogeology

Zongo falls in DRC Zongo falls 1 (5).JPG
Zongo falls in DRC

The hydrogeology of DRC is poorly researched, although individual areas have been studied since the 1950s. Alluvial sand and gravel aquifers are common throughout the country. One unit in Oubangui and Cuvette Centrale is 120 metres (390 ft) thick, recharging rapidly from rainfall and river water. A large aquifer underlying the Batekes Plateau in southeast Kasai, in sandy loam and soft sandstone has poor recharge and transmissivity but sustains the baseflow of many different streams.

Other aquifers are situated in Cretaceous sandstones, Cape orogeny related Mesozoic-Paleozoic sandstones (which are significant near Gemena and Kisangani) and often recharge rapidly. The Lubumbashi dolomites in southern Katanaga can be highly productive, although the presence of schist and gypsum in the carbonates sometimes results in high mineralization. Three main aquifers in the Watsa area in Oriental Province are in fractured Precambrian crystalline basement rock. [6]

Natural hazards

Nyiragongo lava lake in 2005 Nyiragongo lava lake.jpg
Nyiragongo lava lake in 2005

Eastern DRC has several active volcanoes. The eruption of Mount Nyiragongo in January, 2002, killed 45 people in the major eastern city of Goma and lava flows destroyed the city's airport flowing toward Lake Kivu. The eruption of Mount Nyamulagira on November 27, 2006 did not result in significant fatalities.

Mining in southern provinces like Katanga has seriously polluted some of DRC's aquifers. [7]

Natural resource geology

Diamond from the DRC
Photo by Rob Lavinsky Diamond-249290.jpg
Diamond from the DRC
Photo by Rob Lavinsky

Historically, the economy of the Democratic Republic of Congo hinged on the mining industry, particularly in colonial times and immediately after independence. However, Congolese metal mining virtually collapsed as a result of the Second Congo Civil War. The Lufilian Arc hosts the famous copperbelt region that spans from Katanga into Zambia, with 12% of the world's copper and half of all cobalt reserves. Within the polymetallic metallogenic province, there are stratiform, skarn and vein deposits with copper-cobalt and zinc-lead sulfides, noble metals and chlorine oxides. DRC has 3.1 million tons out of the 4.8 million tons of cobalt reserves in the copperbelt.

Political unrest and obsolete equipment caused a precipitous drop in gold production. In the early 1990s, many large mines closed. Kipushi Mine, a copper, zinc and germanium mine near Lubumbashi shut down in 1993, although feasibility studies indicated potential for producing up to 200,000 tons of copper a year prompting the possibility that it might be reopened. Some mines were shut down even earlier, such as a manganese mine in Kisenge closed in the 1970s after the Angolan Civil War shutdown the Benguela railroad used to export ore. Coal production at the Luena Mine in Shaba Province has been curtailed by ethnic conflicts. Coltan, a mix of columbite and tantalite is common in eastern DRC, which yields tantalum when refined. With soaring demand for tantalum capacitors in cellphones, computers and other electronics, prices of the metal increased rapidly. Artisanal mining, often associated with rebels involved in the Kivu conflict has arisen to meet international demand.

DRC also has large diamond deposits, mainly extracted through artisanal mining of alluvium near Mbuji-Mayi in Kasai Province, although many of these reserves are becoming depleted. One third of the DRC's diamonds are smuggled out of the country every year. [8]

Limestone occurs in Kongo Central, Équateur and Haut-Katanga provinces. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Narryer Gneiss Terrane</span> Geological complex of ancient rocks in Western Australia

The Narryer Gneiss Terrane is a geological complex in Western Australia that is composed of a tectonically interleaved and polydeformed mixture of granite, mafic intrusions and metasedimentary rocks in excess of 3.3 billion years old, with the majority of the Narryer Gneiss Terrane in excess of 3.6 billion years old. The rocks have experienced multiple metamorphic events at amphibolite or granulite conditions, resulting in often complete destruction of original igneous or sedimentary (protolith) textures. Importantly, it contains the oldest known samples of the Earth's crust: samples of zircon from the Jack Hills portion of the Narryer Gneiss have been radiometrically dated at 4.4 billion years old, although the majority of zircon crystals are about 3.6-3.8 billion years old.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Tanzania Craton</span> Old and stable part of the continental lithosphere in central Tanzania

The Tanzania Craton is an old and stable part of the continental lithosphere in central Tanzania. Some of the rocks are over 3 billion years old.

<span class="mw-page-title-main">Lufilian Arc</span>

The Lufilian Arc is part of a system of orogenic belts in southern Africa formed during the Pan-African orogeny, a stage in the formation of the Gondwana supercontinent. It extends across eastern Angola, the Katanga Province of the southern Democratic Republic of the Congo and the northwest of Zambia. The arc is about 800 kilometres (500 mi) long. It has global economic importance owing to its rich deposits of copper and cobalt.

The geological basement of the central and eastern regions Equatorial Guinea is composed of Precambrian rocks which form a part of the Congo craton. They include gneiss, greenstone, schist-amphibolite and granitoids. These older rocks are overlain by sedimentary rocks of Mesozoic, Neogene and Quaternary age in the west and along the coast. The islands of Pagalu and Bioko are of relatively recent volcanic origin, forming a part of the Cameroon Volcanic Line.

The geology of Central African Republic (CAR) is part of the broader geology of Africa. CAR occupies a swath of ancient rocks, dating back billions of years that record significant aspects of Earth history and yield minerals vital to the country's small economy.

<span class="mw-page-title-main">Geology of the Republic of the Congo</span>

The geology of the Republic of the Congo, also known as Congo-Brazzaville, to differentiate from the Democratic Republic of the Congo, formerly Zaire, includes extensive igneous and metamorphic basement rock, some up to two billion years old and sedimentary rocks formed within the past 250 million years. Much of the country's geology is hidden by sediments formed in the past 2.5 million years of the Quaternary.

The geology of Liberia is largely extremely ancient rock formed between 3.5 billion and 539 million years ago in the Archean and the Neoproterozoic, with some rocks from the past 145 million years near the coast. The country has rich iron resources as well as some diamonds, gold and other minerals in ancient sediment formations weathered to higher concentrations by tropical rainfall.

<span class="mw-page-title-main">Geology of Ivory Coast</span>

The geology of Ivory Coast is almost entirely extremely ancient metamorphic and igneous crystalline basement rock between 2.1 and more than 3.5 billion years old, comprising part of the stable continental crust of the West African Craton. Near the surface, these ancient rocks have weathered into sediments and soils 20 to 45 meters thick on average, which holds much of Ivory Coast's groundwater. More recent sedimentary rocks are found along the coast. The country has extensive mineral resources such as gold, diamonds, nickel and bauxite as well as offshore oil and gas.

The geology of Malawi formed on extremely ancient crystalline basement rock, which was metamorphosed and intruded by igneous rocks during several orogeny mountain building events in the past one billion years. The rocks of the Karoo Supergroup and newer sedimentary units deposited across much of Malawi in the last 251 million years, in connection with a large rift basin on the supercontinent Gondwana and the more recent rifting that has created the East African Rift, which holds Lake Malawi. The country has extensive mineral reserves, many of them poorly understood or not exploited, including coal, vermiculite, rare earth elements and bauxite.

The geology of Mozambique is primarily extremely old Precambrian metamorphic and igneous crystalline basement rock, formed in the Archean and Proterozoic, in some cases more than two billion years ago. Mozambique contains greenstone belts and spans the Zimbabwe Craton, a section of ancient stable crust. The region was impacted by major tectonic events, such as the mountain building Irumide orogeny, Pan-African orogeny and the Snowball Earth glaciation. Large basins that formed in the last half-billion years have filled with extensive continental and marine sedimentary rocks, including rocks of the extensive Karoo Supergroup which exist across Southern Africa. In some cases these units are capped by volcanic rocks. As a result of its complex and ancient geology, Mozambique has deposits of iron, coal, gold, mineral sands, bauxite, copper and other natural resources.

The geology of Niger comprises very ancient igneous and metamorphic crystalline basement rocks in the west, more than 2.2 billion years old formed in the late Archean and Proterozoic eons of the Precambrian. The Volta Basin, Air Massif and the Iullemeden Basin began to form in the Neoproterozoic and Paleozoic, along with numerous ring complexes, as the region experienced events such as glaciation and the Pan-African orogeny. Today, Niger has extensive mineral resources due to complex mineralization and laterite weathering including uranium, molybdenum, iron, coal, silver, nickel, cobalt and other resources.

<span class="mw-page-title-main">Geology of Sierra Leone</span>

The geology of Sierra Leone is primarily very ancient Precambrian Archean and Proterozoic crystalline igneous and metamorphic basement rock, in many cases more than 2.5 billion years old. Throughout Earth history, Sierra Leone was impacted by major tectonic and climatic events, such as the Leonean, Liberian and Pan-African orogeny mountain building events, the Neoproterozoic Snowball Earth and millions of years of weathering, which has produced thick layers of regolith across much of the country's surface.

<span class="mw-page-title-main">Geology of Tanzania</span>

The geology of Tanzania began to form in the Precambrian, in the Archean and Proterozoic eons, in some cases more than 2.5 billion years ago. Igneous and metamorphic crystalline basement rock forms the Archean Tanzania Craton, which is surrounded by the Proterozoic Ubendian belt, Mozambique Belt and Karagwe-Ankole Belt. The region experienced downwarping of the crust during the Paleozoic and Mesozoic, as the massive Karoo Supergroup deposited. Within the past 100 million years, Tanzania has experienced marine sedimentary rock deposition along the coast and rift formation inland, which has produced large rift lakes. Tanzania has extensive, but poorly explored and exploited natural resources, including coal, gold, diamonds, graphite and clays.

The geology of Uganda extends back to the Archean and Proterozoic eons of the Precambrian, and much of the country is underlain by gneiss, argillite and other metamorphic rocks that are sometimes over 2.5 billion years old. Sedimentary rocks and new igneous and metamorphic units formed throughout the Proterozoic and the region was partially affected by the Pan-African orogeny and Snowball Earth events. Through the Mesozoic and Cenozoic, ancient basement rock has weathered into water-bearing saprolite and the region has experienced periods of volcanism and rift valley formation. The East Africa Rift gives rise to thick, more geologically recent sediment sequences and the country's numerous lakes. Uganda has extensive natural resources, particularly gold.

<span class="mw-page-title-main">Geology of Zambia</span>

The geological history of Zambia begins in the Proterozoic eon of the Precambrian. The igneous and metamorphic basement rocks tend to be highly metamorphosed and may have formed earlier in the Archean, but heat and pressure has destroyed evidence of earlier conditions. Major sedimentary and metamorphic groups formed in the mid-Proterozoic, followed by a series of glaciations in the Neoproterozoic and much of the Paleozoic which deposited glacial conglomerate as well as other sediments to form the Katanga Supergroup and rift-related Karoo Supergroup. Basalt eruptions blanketed the Karoo Supergroup in the Mesozoic and Zambia shifted to coal and sandstone formation. Geologically recent windblown sands from the Kalahari Desert and alluvial deposits near rivers play an important role in the modern surficial geology of Zambia. The country has extensive natural resources, particularly copper, but also cobalt, emeralds, other gemstones, uranium and coal.

<span class="mw-page-title-main">Geology of Sudan</span>

The geology of Sudan formed primarily in the Precambrian, as igneous and metamorphic crystalline basement rock. Ancient terranes and inliers were intruded with granites, granitoids as well as volcanic rocks. Units of all types were deformed, reactivated, intruded and metamorphosed during the Proterozoic Pan-African orogeny. Dramatic sheet flow erosion prevented almost any sedimentary rocks from forming during the Paleozoic and Mesozoic. From the Mesozoic into the Cenozoic the formation of the Red Sea depression and complex faulting led to massive sediment deposition in some locations and regional volcanism. Sudan has petroleum, chromite, salt, gold, limestone and other natural resources.

The geology of Nigeria formed beginning in the Archean and Proterozoic eons of the Precambrian. The country forms the Nigerian Province and more than half of its surface is igneous and metamorphic crystalline basement rock from the Precambrian. Between 2.9 billion and 500 million years ago, Nigeria was affected by three major orogeny mountain-building events and related igneous intrusions. Following the Pan-African orogeny, in the Cambrian at the time that multi-cellular life proliferated, Nigeria began to experience regional sedimentation and witnessed new igneous intrusions. By the Cretaceous period of the late Mesozoic, massive sedimentation was underway in different basins, due to a large marine transgression. By the Eocene, in the Cenozoic, the region returned to terrestrial conditions.

<span class="mw-page-title-main">Geology of Belarus</span>

The geology of Belarus began to form more than 2.5 billion years ago in the Precambrian, although many overlying sedimentary units deposited during the Paleozoic and the current Quaternary. Belarus is located in the eastern European plain. From east to west it covers about 650 kilometers while from north to south it covers about 560 kilometers, and the total area is about 207,600 square kilometers. It borders Poland in the north, Lithuania in the northwest, Latvia and Russia in the north, and Ukraine in the south. Belarus has a planar topography with a height of about 160 m above sea level. The highest elevation at 346 meters above sea level is Mt. Dzerzhinskaya, and the lowest point at the height of 80 m is in the Neman River valley.

The geology of Nunavut began to form nearly three billion years ago in the Archean and the territory preserves some of the world's oldest rock units.

References

  1. Schluter, Thomas (2006). Geological Atlas of Africa (PDF). Springer. p. 78–80.
  2. Schluter 2006, p. 78-80.
  3. 1 2 Schluter 2006, p. 79-80.
  4. Schluter 2006, p. 80-81.
  5. The Complete Catalog of the Earth's Impact structures by Anna Mikheeva
  6. "Hydrogeology of Democratic Republic of Congo". British Geological Survey.
  7. Schluter 2006, p. 82.
  8. Schluter 2006, p. 81-82.
  9. https://www.investindrc.cd/en/Mines Democratic Republic of the Congo National Investment Promotion Agency