Geology of Ethiopia

Last updated
Tigray Escarpment in northern Ethiopia exposing the layers of the Ethiopia-Yemen Continental Flood Basalts. Tigray Escarpment, Ethiopia (9798417064).jpg
Tigray Escarpment in northern Ethiopia exposing the layers of the Ethiopia-Yemen Continental Flood Basalts.

The geology of Ethiopia includes rocks of the Neoproterozoic East African Orogeny, Jurassic marine sediments and Quaternary rift-related volcanism. Events that greatly shaped Ethiopian geology is the assembly and break-up of Gondwana and the present-day rifting of Africa.

Contents

Overview

Rocks formed by the East African Orogeny 880 to 550 million years ago make up the oldest geological units in Ethiopia. [1] The orogeny caused the closure of the ancient Mozambique Ocean. Rocks of Ethiopia formed concurrently with the Mozambique Belt and the Arabian-Nubian Shield [1] forming a large north-south (present-day coordinates) mountain chain called the Transgondwanan Supermountain. [2] Erosion of this mountain may have played a role in triggering the Cambrian explosion. [2] Erosion of the orogen and mountain was such that by the early Paleozoic a planation surface extended across Ethiopia. [1] [3] [upper-alpha 1] Sedimentary rocks of Ordovician age cover this surface making it largely an unconformity. [3] [upper-alpha 2] At parts the unconformity of the Precambrian basement has glacial striations, rôche moutonnées and chatter marks formed likely during the Karoo Ice Age. The Paleozoic sedimentary cover above the unconformity is of fluvial and glacial origin (Enticho Sandstone, Edaga Arbi Glacials). [1]

Early Jurassic marine sediments cover much of the older sediments including a planation surface of Triassic age. [1] [3] These sediments deposited as result of a regional marine transgression swept over the Horn of Africa during the initial break-up of Gondwana. Resultant rocks include sandstone, limestone, shale, marls and evaporites (Adigrat Sandstone, Antalo Limestone, Amba Aradam Formation). [1] A third major plantion surface and uniformity formed in the following a tectonic event in the Early Cretaceous that tilted carbonates in the Tigray and Dire Dawa-Harar areas. [1] On top of this surface lies a series a fluvial sediments. [1] Depositions of marine sediments continued in eastern Ethiopia's Ogaden basin until the Eocene. [1]

The Ethiopia-Yemen Continental Flood Basalts or Ethiopian traps that cover much of Ethiopia flowed over both irregular surfaces and peneplains preserving laterite soil beneath. The flood basalts covered initially a much larger area (>750,000 km2) just after eruption about 30 million years ago in the Oligocene with volumes reaching 350,000 km3 (Ashangi Basalts, Alaji Basalts). Since then erosion has reduced areal extent and volumes. The modern pattern of volcanism concentrated to the Afar Depression and the Main Ethiopian Rift begun in Late Miocene time. [1] The area of modern volcanism contains the bulk of Ethiopias geothermal energy resources. [4]

This escarpment between Tsili and Kola Tembien holds most of Ethiopia's sedimentary rock types View from Tsili to Addeha.jpg
This escarpment between Tsili and Kola Tembien holds most of Ethiopia's sedimentary rock types

Notes

  1. Contrary to what has been suggested for much of Africa planation surfaces in Ethiopia do not appear to be pediplains nor etchplains. [1] [3]
  2. In other words, this surface was subsequently buried beneath sediments in the Ordovician epoch. [3]

Related Research Articles

<span class="mw-page-title-main">Geology of India</span> Geological origins and structure of India

The geology of India is diverse. Different regions of India contain rocks belonging to different geologic periods, dating as far back as the Eoarchean Era. Some of the rocks are very deformed and altered. Other deposits include recently deposited alluvium that has yet to undergo diagenesis. Mineral deposits of great variety are found in the Indian subcontinent in huge quantities. Even India's fossil record is impressive in which stromatolites, invertebrates, vertebrates and plant fossils are included. India's geographical land area can be classified into the Deccan Traps, Gondwana and Vindhyan.

<span class="mw-page-title-main">Geology of Australia</span> Overview of the geology of Australia

The geology of Australia includes virtually all known rock types, spanning a geological time period of over 3.8 billion years, including some of the oldest rocks on earth. Australia is a continent situated on the Indo-Australian Plate.

<span class="mw-page-title-main">East African Orogeny</span> Main stage in the Neoproterozoic assembly of East and West Gondwana

The East African Orogeny (EAO) is the main stage in the Neoproterozoic assembly of East and West Gondwana along the Mozambique Belt.

<span class="mw-page-title-main">Geology of Uruguay</span>

The geology of Uruguay combines areas of Precambrian-aged shield units with a region of volcanic rock erupted during the Cretaceous and copious sedimentary facies the oldest of which date from the Devonian. Big events that have shaped the geology of Uruguay include the Transamazonian orogeny, the breakup of Rodinia and the opening of the South Atlantic.

<span class="mw-page-title-main">Caballo Mountains</span>

The Caballo Mountains, are a mountain range located in Sierra and Doña Ana Counties, New Mexico, United States. The range is located east of the Rio Grande and Caballo Lake, and west of the Jornada del Muerto; the south of the range extends into northwest Doña Ana County. The nearest towns are Truth or Consequences and Hatch.

<span class="mw-page-title-main">Geology of Iran</span>

The main points that are discussed in the geology of Iran include the study of the geological and structural units or zones; stratigraphy; magmatism and igneous rocks; ophiolite series and ultramafic rocks; and orogenic events in Iran.

<span class="mw-page-title-main">Geology of Germany</span> Overview of the geology of Germany

The geology of Germany is heavily influenced by several phases of orogeny in the Paleozoic and the Cenozoic, by sedimentation in shelf seas and epicontinental seas and on plains in the Permian and Mesozoic as well as by the Quaternary glaciations.

One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils. Moreover, it consists of many varied lithofacies, making correlation work more difficult. This article describes the major formations of the Paleozoic – Mesozoic Lesser Himalayan Strata, including the Tal Formation, Gondwana Strata, Singtali Formation and Subathu Formation.

The geology of Somalia is built on more than 700 million year old igneous and metamorphic crystalline basement rock, which outcrops at some places in northern Somalia. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate. The geology of Somaliland, the de facto independent country recognized as part of Somalia, is to some degree better studied than that of Somalia as a whole. Instability related to the Somali Civil War and previous political upheaval has limited geologic research in places while heightening the importance of groundwater resources for vulnerable populations.

<span class="mw-page-title-main">Geology of Tanzania</span>

The geology of Tanzania began to form in the Precambrian, in the Archean and Proterozoic eons, in some cases more than 2.5 billion years ago. Igneous and metamorphic crystalline basement rock forms the Archean Tanzania Craton, which is surrounded by the Proterozoic Ubendian belt, Mozambique Belt and Karagwe-Ankole Belt. The region experienced downwarping of the crust during the Paleozoic and Mesozoic, as the massive Karoo Supergroup deposited. Within the past 100 million years, Tanzania has experienced marine sedimentary rock deposition along the coast and rift formation inland, which has produced large rift lakes. Tanzania has extensive, but poorly explored and exploited natural resources, including coal, gold, diamonds, graphite and clays.

<span class="mw-page-title-main">Geology of Zambia</span>

The geological history of Zambia begins in the Proterozoic eon of the Precambrian. The igneous and metamorphic basement rocks tend to be highly metamorphosed and may have formed earlier in the Archean, but heat and pressure has destroyed evidence of earlier conditions. Major sedimentary and metamorphic groups formed in the mid-Proterozoic, followed by a series of glaciations in the Neoproterozoic and much of the Paleozoic which deposited glacial conglomerate as well as other sediments to form the Katanga Supergroup and rift-related Karoo Supergroup. Basalt eruptions blanketed the Karoo Supergroup in the Mesozoic and Zambia shifted to coal and sandstone formation. Geologically recent windblown sands from the Kalahari Desert and alluvial deposits near rivers play an important role in the modern surficial geology of Zambia. The country has extensive natural resources, particularly copper, but also cobalt, emeralds, other gemstones, uranium and coal.

The geology of Morocco formed beginning up to two billion years ago, in the Paleoproterozoic and potentially even earlier. It was affected by the Pan-African orogeny, although the later Hercynian orogeny produced fewer changes and left the Maseta Domain, a large area of remnant Paleozoic massifs. During the Paleozoic, extensive sedimentary deposits preserved marine fossils. Throughout the Mesozoic, the rifting apart of Pangaea to form the Atlantic Ocean created basins and fault blocks, which were blanketed in terrestrial and marine sediments—particularly as a major marine transgression flooded much of the region. In the Cenozoic, a microcontinent covered in sedimentary rocks from the Triassic and Cretaceous collided with northern Morocco, forming the Rif region. Morocco has extensive phosphate and salt reserves, as well as resources such as lead, zinc, copper and silver.

The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.

The geology of Arizona began to form in the Precambrian. Igneous and metamorphic crystalline basement rock may have been much older, but was overwritten during the Yavapai and Mazatzal orogenies in the Proterozoic. The Grenville orogeny to the east caused Arizona to fill with sediments, shedding into a shallow sea. Limestone formed in the sea was metamorphosed by mafic intrusions. The Great Unconformity is a famous gap in the stratigraphic record, as Arizona experienced 900 million years of terrestrial conditions, except in isolated basins. The region oscillated between terrestrial and shallow ocean conditions during the Paleozoic as multi-cellular life became common and three major orogenies to the east shed sediments before North America became part of the supercontinent Pangaea. The breakup of Pangaea was accompanied by the subduction of the Farallon Plate, which drove volcanism during the Nevadan orogeny and the Sevier orogeny in the Mesozoic, which covered much of Arizona in volcanic debris and sediments. The Mid-Tertiary ignimbrite flare-up created smaller mountain ranges with extensive ash and lava in the Cenozoic, followed by the sinking of the Farallon slab in the mantle throughout the past 14 million years, which has created the Basin and Range Province. Arizona has extensive mineralization in veins, due to hydrothermal fluids and is notable for copper-gold porphyry, lead, zinc, rare minerals formed from copper enrichment and evaporites among other resources.

The geology of Utah, in the western United States, includes rocks formed at the edge of the proto-North American continent during the Precambrian. A shallow marine sedimentary environment covered the region for much of the Paleozoic and Mesozoic, followed by dryland conditions, volcanism, and the formation of the basin and range terrain in the Cenozoic.

<span class="mw-page-title-main">Geology of New York (state)</span> Overview of the geology of the U.S. state of New York

The geology of the State of New York is made up of ancient Precambrian crystalline basement rock, forming the Adirondack Mountains and the bedrock of much of the state. These rocks experienced numerous deformations during mountain building events and much of the region was flooded by shallow seas depositing thick sequences of sedimentary rock during the Paleozoic. Fewer rocks have deposited since the Mesozoic as several kilometers of rock have eroded into the continental shelf and Atlantic coastal plain, although volcanic and sedimentary rocks in the Newark Basin are a prominent fossil-bearing feature near New York City from the Mesozoic rifting of the supercontinent Pangea.

The geology of Argentina includes ancient Precambrian basement rock affected by the Grenville orogeny, sediment filled basins from the Mesozoic and Cenozoic as well as newly uplifted areas in the Andes.

The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.

<span class="mw-page-title-main">Parnaíba Basin</span>

The Parnaíba Basin is a large cratonic sedimentary basin located in the North and Northeast portion of Brazil. About 50% of its areal distribution occurs in the state of Maranhão, and the other 50% occurring in the state of Pará, Piauí, Tocantins, and Ceará. It is one of the largest Paleozoic basins in the South American Platform. The basin has a roughly ellipsoidal shape, occupies over 600,000 km2, and is composed of ~3.4 km of mainly Paleozoic sedimentary rock that overlies localized rifts.

<span class="mw-page-title-main">Geology of the Ellsworth Mountains</span> Geology of the Ellsworth Mountains, Antarctica

The geology of the Ellsworth Mountains, Antarctica, is a rock record of continuous deposition that occurred from the Cambrian to the Permian periods, with basic igneous volcanism and uplift occurring during the Middle to Late Cambrian epochs, deformation occurring in the Late Permian period or early Mesozoic era, and glacier formation occurring in the Cretaceous period and Cenozoic era. The Ellsworth Mountains are located within West Antarctica at 79°S, 85°W. In general, it is made up of mostly rugged and angular peaks such as the Vinson Massif, the highest mountain in Antarctica.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Abbate, Ernesto; Bruni, Piero; Sagri, Mario (2015). "Geology of Ethiopia: A Review and Geomorphological Perspectives". In Billi, Paolo (ed.). Landscapes and Landforms of Ethiopia. World Geomorphological Landscapes. pp. 33–64. doi:10.1007/978-94-017-8026-1_2. ISBN   978-94-017-8026-1.
  2. 1 2 Squire, R. J.; Campbell, I. H.; Allen, C. M.; Wilson, C. J. (2006). "Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?" (PDF). Earth and Planetary Science Letters . 250 (1): 116–133. doi:10.1016/j.epsl.2006.07.032 . Retrieved 11 September 2017.
  3. 1 2 3 4 5 Coltorti, M.; Dramis, F.; Ollier, C. D. (2007). "Planation surfaces in Northern Ethiopia". Geomorphology. 89 (3–4): 287–296. doi:10.1016/j.geomorph.2006.12.007.
  4. Tadesse, Salomon; Milesi, Jean-Pierre; Deschamps, Yves (2003). "Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia". Journal of African Earth Sciences . 36 (4): 273–313. doi:10.1016/S0899-5362(03)00048-4.